Comparative Electrobiology of Mammalian Central Neurons

  • Rodolfo R. Llinás


In assessing the impact of the in vitro analysis of CNS function, especially in mammals, one issue has become clear; mammalian neurons are endowed with a large and intricate set of ionic conductances. The intricacy of these conductances relates not only to their ionic specificity, their voltage dependence, and their modulation by neurotransmitters and neuropeptides, but also to their location on the soma-dendritic regions of the neurons. This realization has forced all of us to reexamine the levels at which the rather involved interactions between neurons actually occur. For many years, most of the complexity demonstrable electrophysiologically in different regions of the nervous system was assumed to be produced by the synaptic interactions, i.e., the neuronal network. However, it is evident, following the development of the in vitro preparations, that much of the electrophysiology encountered in mammalian neurons does not derive necessarily from the attributes of networks but, rather, from the intrinsic electrical properties of the cells themselves.


Dorsal Root Ganglion Purkinje Cell Electrophysiological Property Spinal Motoneuron Inferior Olive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. R. and Halliwell, J. V., 1982, A hyperpolarization-induced inward current in hippocampal pyramidal cells, J. Physiol. (London) 324:62–63P.Google Scholar
  2. Adams, P. R., Brown, D. A., and Halliwell, J. V., 1981, Cholinergic regulation of M-current in hippocampal pyramidal cells, J. Physiol (London) 317:29–30P.Google Scholar
  3. Adams, P. R., Brown, D. A., and Constanti, A., 1982a, M-currents and other potassium currents in bullfrog sympathetic neurones, J. Physiol (London) 330:537–572.Google Scholar
  4. Adams, P. R., Constanti, A., Brown, D. A., and Clark, R. B., 1982b, Intracellular calcium activates a fast voltage-sensitive potassium current in vertebrate sympathetic neurones, Nature (London) 296:746–749.CrossRefGoogle Scholar
  5. Adams, P. R., Brown, D. A., and Constanti, A., 1982c, Pharmacological inhibition of the M-current, J. Physiol (London) 332:223–262.Google Scholar
  6. Adrian, R. H., 1969, Rectification in muscle membrane, Prog. Biophys Mol Biol. 19:339–369.PubMedCrossRefGoogle Scholar
  7. Araki, T. and Terzuolo, C. A., 1962, Membrane currents in spinal motoneurons associated with the action potential and synaptic activity, J. Neurophysiol. 25:772–789.PubMedGoogle Scholar
  8. Armstrong, C. M. and Binstock, L., 1965, Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride, J. Gen. Physiol 48:859–872.PubMedCrossRefGoogle Scholar
  9. Barrett, E. F., Barrett, J. N., and Crill, W. E., 1980, Voltage-sensitive outward currents in cat motoneurones, J. Physiol. (London) 304:251–276.Google Scholar
  10. Barrett, J. N. and Crill, W. E., 1974, Specific membrane properties of cat motoneurones, J. Physiol. (London) 239:301–324.Google Scholar
  11. Barrett, J. N. and Crill, W. E., 1980, Voltage clamp of motoneuron somata: Properties of the fast inward current, J. Physiol (London) 304:231–249.Google Scholar
  12. Brigant, J. L. and Mallart, A., 1982, Presynaptic currents in mouse motor endings. J. Physiol (London) 333:619–636.Google Scholar
  13. Brown, H. F. and Adams, P. R., 1979, Muscarinic modification of voltage-sensitive currents in sympathetic neurones, Soc. Neurosci. Abstr. 5:585.Google Scholar
  14. Brown, H. F. and Adams, P. R., 1980, Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron, Nature (London) 283:673–679.CrossRefGoogle Scholar
  15. Brown, H. F. and Difrancisco, D., 1980, Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node, J. Physiol. (London) 308:311–351.Google Scholar
  16. Cahalan, M., 1978, Local anesthetic block of sodium channels in normal and pronasetreated squid giant axons, Biophys. J. 23:285–311.PubMedCrossRefGoogle Scholar
  17. Cahalan, M., 1980, Molecular properties of sodium channels in excitable membranes, in: The Cell Surface and Neuronal Function (C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), Elsevier North-Holland, Amsterdam, pp. 1–47.Google Scholar
  18. Chiu, S. Y., Ritchie, J. M., Rogart, R. B., and Stagg, D., 1979, A quantitative description of membrane currents in rabbit myelinated nerve, J. Physiol. (London) 292:149–166.Google Scholar
  19. Connor, J. A. and Stevens, C. F., 1971, Inward and delayed outward membrane currents in isolated neural somata under voltage clamp, J. Physiol. (London) 213:1–20.Google Scholar
  20. Constanti, A. and Brown, D. A., 1981, M-currents in voltage-clamped mammalian sym pathetic neurones, Neurosci. Lett. 24:289–294.PubMedCrossRefGoogle Scholar
  21. Constanti, A. and Galvan, M., 1983, Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones, J. Physiol. (London) 385:153–178.Google Scholar
  22. Czeh, G., 1972, The role of dendritic events in the initiation of monosynaptic spikes in frog motoneurons, Brain Res. 39:505–509.PubMedCrossRefGoogle Scholar
  23. Eccles, J. C., Libet, B., and Young, R. R., 1958, The behavior of chromatolysed motoneurons studied by intracellular recording, J. Physiol. (London) 143:11–40.Google Scholar
  24. Fedulova, S. A., Kostyuk, P. G., and Veselovsky, N. S., 1981, Calcium channels in the somatic membrane of the rat dorsal ganglion, effects of cAMP, Brain Res. 214:210–214.PubMedCrossRefGoogle Scholar
  25. Fukuda, J. and Kameyama, M., 1980, Tetrodotoxin-sensitive and tetrodotoxinresistant sodium channels in tissue-cultured spinal ganglion neurons from adult mammals, Brain Res. 182:191–197.PubMedCrossRefGoogle Scholar
  26. Fukushima, Y., 1982, Blocking kinetics of the anomalous potassium rectifier of tunicate egg studied by single channel recording, J. Physiol. (London) 331:311–331.Google Scholar
  27. Fulton, B. and Walton, K., 1981, Calcium-dependent spikes in neonatal rat spinal cord in vitro, J. Physiol. (London) 317:25–26P.Google Scholar
  28. Gustafsson, B., Galvan, M., Grafe, P., and Wigstrom, H., 1982, A transient outward current in a mammalian central neurone blocked by 4-amino-pyridine, Nature (London) 299:252–254.CrossRefGoogle Scholar
  29. Hagiwara, S., Miyazaki, S., and Rosenthal, N. P., 1976, Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish, J. Gen. Physiol 67:621–628.PubMedCrossRefGoogle Scholar
  30. Halliwell, J. V. and Adams, P. R., 1982, Voltage clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250:71–92.PubMedCrossRefGoogle Scholar
  31. Harada, V. and Takahashi, T., 1983, The calcium component of the action potential in spinal motoneuron of the rat, J. Physiol. (London) 335:89–100.Google Scholar
  32. Hodgkin, A. L. and Huxley, A. F., 1952a, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J. Physiol. (London) 116:497–506.Google Scholar
  33. Hodgkin, A. L. and Huxley, A. F., 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117:500–544.Google Scholar
  34. Horn, R., 1977, Tetrodotoxin-resistant divalent action potentials in an axon of Aplysia, Brain Res. 133:177–182.CrossRefGoogle Scholar
  35. Hotson, J. R. and Prince, D. A., 1980, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons, J. Neurophysiol. 43:409–419.PubMedGoogle Scholar
  36. Hotson, J. R., Prince, D. A., and Schwartzkroin, P. A., 1979, Anomalous inward rectification in hippocampal neurons, J. Neurophysiol. 42:889–895.PubMedGoogle Scholar
  37. Jahnsen, J. and Llinás, R., Electrophysiological properties of mammalian thalamic neurones: An in vitro study, J. Physiol., in press.Google Scholar
  38. Jahnsen, J. and Llinás, R., Ionic basis for the electrical activation and the oscillatory properties of thalamic neurons in vitro, J. Physiol, in press.Google Scholar
  39. Kandel, E. R. and Tauc, L., 1966, Anomalous rectification in the metacerebral giant cells and its consequence for synaptic transmission, J. Physiol. (London) 183:287–304.Google Scholar
  40. Katz, B., 1949, Les constantes éléctriques de la membrane du muscle, Arch. Sci. Physiol. 3:285–299.Google Scholar
  41. Kobayashi, H., Hashiguchi, T., Tosaka, T., and Mochida, S., 1981, Muscarinic antagonism of a persistent outward current in sympathetic neurons of rabbits and its partial contribution to the generation of the slow EPSP, Neurosci. Lett. 6(suppl.):S64.Google Scholar
  42. Krnjevic, K. and Lisiewicz, A., 1972, Injections of calcium ions into spinal motoneurones, J. Physiol. (London) 225:363–390.Google Scholar
  43. Kuno, M. and Llinás, R., 1970, Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat, J. Physiol. (London) 210:807–821.Google Scholar
  44. Llinâs, R., 1979, The role of calcium in neuronal function, in: The Neurosciences: Fourth Study Program (F. O. Schmitt and F. G. Worden, eds.), M.I.T. Press, Cambridge, Mass. pp. 555–571.Google Scholar
  45. Llinás, R., Rebound excitation as the physiological basis for tremor: A biophysical study of the oscillatory properties of mammalian central neurons in vitro, in: International Neurological Symposia: Tremor (R. Capildeo and L. J. Findley, eds.), Macmillan, London, in press.Google Scholar
  46. Llinás, R. and Hess, R., 1976, Tetrodotoxin-resistant dendritic spikes in avian Purkinje cell, Proc. Nat. Acad. Sci. USA 73:2520–2523.PubMedCrossRefGoogle Scholar
  47. Llinás, R. and Jahnsen, H., 1982, Electrophysiology of mammalian thalamic neurones in vitro, Nature (London) 297:406–408.CrossRefGoogle Scholar
  48. Llinás, R. and Nicholson, C., 1971, Electrophysiological properties of dendrites and somata in alligator Purkinje cells, J. Neurophysiol. 34:534–551.Google Scholar
  49. Llinás, R. and Sugimori, M., 1978, Dendritic calcium spiking in mammalian Purkinje cells: In vitro study of its function and development, Soc. Neurosci. Abstr. 4:66.Google Scholar
  50. Llinás, R. and Sugimori, M., 1980a, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (London) 305:171–195.Google Scholar
  51. Llinás, R. and Sugimori, M., 1980b, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (London) 305:197–213.Google Scholar
  52. Llinás, R. and Yarom, Y., 1980, Electrophysiological properties of mammalian inferior olivary cells in vitro, in: The Inferior Olivary Nucleus: Anatomy and Physiology (J. Courville, C. de Montigny, and Y. Lamarre, eds.), Raven Press, New York, pp. 379–388.Google Scholar
  53. Llinás, R. and Yarom, Y., 1981a, Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro, J. Physiol (London) 315:569–584.Google Scholar
  54. Llinás, R. and Yarom, Y., 1981b, Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances, J. Physiol. (London) 315:549–567.Google Scholar
  55. Llinás, R., Sugimori, M., and Walton, K., 1977, Calcium dendritic spikes in the mammalian Purkinje cells, Soc. Neurosci. Abstr. 3:58.Google Scholar
  56. Lorente de Nó, R. and Condouris, G. A., 1959, Decrementai conduction in peripheral nerve. Integration of stimuli in the neuron, Proc. Natl. Acad. Sci. USA 45:592–617.CrossRefGoogle Scholar
  57. Lux, H. D. and Winter, P., 1968, Studies on EPSPs in normal and retrograde recting facial motoneurones, Proc. Int. Union Physiol. Sci. 7:818.Google Scholar
  58. MacDermott, A. B. and Weight, F. F., 1980, The pharmacological blockade of potassium conductance in voltage-clamped bullfrog sympathetic neurons, Fed. Proc. 39:2074.Google Scholar
  59. MacDermott, A. B. and Weight, F. F., 1982, Action potential repolarization may involve a transient, Ca2+-sensitive outward current in a vertebrate neurone, Nature (London) 300:185–188.CrossRefGoogle Scholar
  60. Matsuda, Y., Yoshida, S., and Yonezawa, T., 1977, Tetrodotoxin sensitivity and Ca component of action potentials of mouse dorsal root ganglion cells cultures in vitro, Brain Res. 154:69–82.CrossRefGoogle Scholar
  61. Matteson, D. R. and Armstrong, C. M., 1982, Evidence for a population of sleepy sodium channels in squid axon at low temperature, J. Gen. Physiol. 79:739–758.PubMedCrossRefGoogle Scholar
  62. McAfee, D. A. and Yarowsky, P. J., 1979, Calcium-dependent potentials in the mammalian sympathetic neurone, J. Physiol. (London) 290:507–523.Google Scholar
  63. Meech, R. W., 1972, Intracellular calcium injection causes increased potassium conductance in aplysia nerve cells, Comp. Biochem. Physiol. 42A:493.CrossRefGoogle Scholar
  64. Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissues, Am. Rev. Biophys. Bioeng. 7:1–18.CrossRefGoogle Scholar
  65. Murase, K. and Randic, M., 1983, Electrophysiological properties of rat spinal dorsal horn neurones in vitro: Calcium-dependent action potentials, J. Physiol. (London) 334:141–153.Google Scholar
  66. Nelson, P. G. and Frank, K., 1967, Anomalous rectification in cat spinal motoneurons and effects of polarizing currents on excitatory postsynaptic potentials, J. Neurophysiol. 30:1097–1113.PubMedGoogle Scholar
  67. Noma, A. and Irisawa, H., 1976, Membrane currents in the rabbit sino atrial node cell as studied by double microelectrode method, Pflügers Arch. 364:45–52.PubMedCrossRefGoogle Scholar
  68. Nowak, L. M. and Macdonald, R. L., 1981, DL-muscarine decreases a potassium con ductance to depolarize mammalian spinal cord neurons in cell culture, Neurosci. Abstr. 7:725.Google Scholar
  69. Ohmori, H., 1978, Inactivation kinetics and steady-state noise in the anomalous rectifier of tunicate cell membranes, J. Physiol. (London) 281:77–99.Google Scholar
  70. Purpura, D. P., Prevelic, N., and Santini, M., 1968, Hyperpolarizing increase in membrane conductance in hippocampal neurons, Brain Res. 7:310–312.PubMedCrossRefGoogle Scholar
  71. Scholfield, C. N., 1978, Electrical properties of neurones in the olfactory cortex slice in vitro, J. Physiol. (London) 275:547–557.Google Scholar
  72. Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal slice, Brain Res. 85:423–435.PubMedCrossRefGoogle Scholar
  73. Schwartzkroin, P. A. and Slawsky, M., 1977, Probable calcium spikes in hippocampal neurons, Brain Res. 135:157–161.PubMedCrossRefGoogle Scholar
  74. Schwindt, P. C. and Crill, W. E., 1980, Properties of a persistent inward current in normal and TEA-injected motoneurons, J. Neurophysiol. 43:1700–1724.PubMedGoogle Scholar
  75. Shapovalov, A. I. and Grantyn, A. A., 1968, A suprasegmental synaptic influence on chromatolysed motor neurones, Biofizika 3:260–269.Google Scholar
  76. Sigworth, F. J. and Neher, E., 1980, Single Na channel currents observed in cultured rat muscle cells, Nature (London) 287:447–449.CrossRefGoogle Scholar
  77. Spencer, W. A. and Kandel, E. R., 1961, Electrophysiology of hippocampal neurons. IV. Fast preprotentials, J. Neurophysiol. 24:272–285.Google Scholar
  78. Stafstrom, C. E., Schwindt, P. C., and Crill, W. E., 1982, Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro, Brain Res. 236:221–226.PubMedCrossRefGoogle Scholar
  79. Sugimori, M. and Llinás, R., 1980, Lidocaine differentially blocks fast and slowly inacti vating sodium conductance in Purkinje cells: An in vitro study in guinea pig cerebellum using iontophoretic glutamic acid, Soc. Neurosci. Abstr. 6:468.Google Scholar
  80. Sugimori, M. and Llinás, R., 1982, Role of dendritic electroresponsiveness in neuronal integration: In vitro study of mammalian Purkinje cells, Soc. Neurosci. Abstr. 8:446.Google Scholar
  81. Takahashi, K., Kubota, K., and Masatake, U., 1967, Recurrent facilitation in cat pyramidal tract cells, J. Neurophysiol. 30:22–34.Google Scholar
  82. Terzuolo, C. A. and Araki, T., 1961, An analysis of intra- versus extracellular potential changes associated with activity of single spinal motoneurons, Ann. N. Y. Acad. Sci. 94:547–558.PubMedCrossRefGoogle Scholar
  83. Walton, K. and Fulton, B., 1981, Role of calcium conductance in neonatal motoneurons of isolated rat spinal cord, Soc. Neurosci. Abstr. 7:246.Google Scholar
  84. Wilson, W. A. and Goldner, M. M., 1975, Voltage clamping with a single microelectrode, J. Neurobiol. 6:411–422.PubMedCrossRefGoogle Scholar
  85. Wong, R. K. S. and Prince, D. A., 1978, Participation of calcium spikes during intrinsic burst firing in hippocampal neurons, Brain Res. 159:385–390.PubMedCrossRefGoogle Scholar
  86. Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Natl. Acad. Sci. USA 76:986–990.PubMedCrossRefGoogle Scholar
  87. Yanagihara, K. and Irisawa, H., 1980, Inward current activated during hyperpolarization in the rabbit sino atrial node, Pflügers Arch. 385:11–19.PubMedCrossRefGoogle Scholar
  88. Yarom, Y. and Llinás, R., 1979, Electrophysiological properties of mammalian inferior olive neuron in in vitro brain stem slices and in vitro whole brain stem, Soc. Neurosci. Abstr. 5:109.Google Scholar
  89. Yarom, Y., Sugimori, M., and Llinás, R., 1980, Inactivating fast potassium conductance in vagal motoneurons in guinea pigs: An in vitro study, Soc. Neurosci. Abstr. 6:198.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Rodolfo R. Llinás
    • 1
  1. 1.Department of Physiology and BiophysicsNew York University Medical CenterNew YorkUSA

Personalised recommendations