Brain Slices pp 341-374 | Cite as

Hypothalamic Neurobiology

  • Glenn I. Hatton


Reviewed in this chapter are the contributions made to our current understanding of hypothalamic neurobiology by studies involving the use of brain slices. These contributions must be viewed in the context of what questions were perceived to be important at the time that the hypothalamic in vitro slice became a reality. With this in mind, an attempt has been made to give a brief, but informative background sketch of each field of hypothalamic function to which slice technology has been successfully applied. My expectation is that the reader will agree that the picture of neural function in the hypothalamus, viewed as it were, through the slice, is somewhat clearer than it was heretofore. Some of our prior notions, gleaned from in vivo studies, have been confirmed; others have been modified beyond recognition. A few extremely well-kept hypothalamic secrets have been revealed, though many await our further arduous sleuthing activities.


Firing Rate Paraventricular Nucleus Axon Collateral Milk Ejection Phasic Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H. and Ogata, N., 1982, Ionic mechanism for the osmotically-induced depolarization in neurons of the guinea-pig supraoptic nucleus in vitro, J. Physiol. (London) 327:157–171.Google Scholar
  2. Almli, C. R. and Weiss, C. S., 1974, Drinking behaviours: Effects of lateral preoptic and lateral hypothalamic destruction, Physiol. Behav. 13:527–538.PubMedCrossRefGoogle Scholar
  3. Andrew, R. D., MacVicar, B. A., Dudek, F. E., and Hatton, G. I., 1981, Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus, Science 211:1187–1189.PubMedCrossRefGoogle Scholar
  4. Antunes, J. L., Carmel, P. W., and Zimmerman, E. A., 1977, Projections from the paraventricular nucleus to the zona externa of the median eminence of the rhesus monkey: An immunohistochemical study, Brain Res. 137:1–10.PubMedCrossRefGoogle Scholar
  5. Armstrong, W. E., Warach, S., Hatton, G. I., and McNeill, T. H., 1980, Subnuclei in the rat paraventricular nucleus: A cytoarchitectural, horseradish peroxidase and immunocytochemical analysis, Neuroscience 5:1931–1958.PubMedCrossRefGoogle Scholar
  6. Bargmann, W. and Scharrer, E., 1951, The site of origin of the hormones of the posterior pituitary, Am. Scientist 39:255–259.Google Scholar
  7. Bennett, M. V. L., 1978, Junctional permeability, in: Intercellular Junctions and Synapses (J. Feldman, N. B. Gilula, and J. D. Pitts, eds.), Halsted Press, New York, pp. 23–36.Google Scholar
  8. Blass, E. M. and Epstein, A. N., 1971, A lateral preoptic osmosensitive zone for thirst in the rat, J. Comp. Physiol. Psychol. 76:378–394.PubMedCrossRefGoogle Scholar
  9. Brimble, M. J. and Dyball, R. E. J., 1977, Characterization of the responses of oxytocin-and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation, J. Physiol (London) 271:253–272.Google Scholar
  10. Brimble, M. J., Haller, E. W., and Wakerley, J. B., 1978, Supraoptic and paraventricular units in hypothalamic slices incubated in iso- or hypertonic medium, J. Physiol. (London) 278:38P-39P.Google Scholar
  11. Boulant, J. A., 1980, Hypothalamic control of thermoregulation: Neurophysiological basis, in: Handbook of the Hypothalamus, Volume 3, Part A (P. J. Morgane and J. Panksepp, eds.), Marcel Dekker, New York, pp. 1–82.Google Scholar
  12. Bourque, C. and Renaud, L. P., 1981, Osmosensitivity of rat supraoptic neurosecretory neurons in the isolated and perfused basal hypothalamus, Can. Physiol. 12:93.Google Scholar
  13. Cobbett, P., Smithson, K. G., and Hatton, G. I., 1982, Immunoreactivity to neurophysins I and II in dye-coupled magnocellular hypothalamic neurons, Soc. Neurosci. Abstr. 8:531.Google Scholar
  14. Cobbett, P., Hatton, G. I. and Salm, A. K., 1983, Evidence for local circuits in the paraventricular nucleus of the rat hypothalamus, J. Physiol. (London). 338:43P.Google Scholar
  15. Conrad, L. C. and Pfaff, D. W., 1976, Efferents from medial basal forebrain and hypothalamus in the rat—II. An autoradiographic study of the anterior hypothalamus, J. Comp. Neurol. 169:221–262.PubMedCrossRefGoogle Scholar
  16. Defendini, R. and Zimmerman, E. A., 1978, The magnocellular neurosecretory system of the mammalian hypothalamus, in: The Hypothalamus (S. Reichlin, R. J. Baldessarini, and J. B. Martin, eds.), Raven Press, New York, pp. 137–152.Google Scholar
  17. de Wied, D., 1980, Behavioral actions of neurohypophysial peptides, Proc. R. Soc. London Ser. B 210:183–195.CrossRefGoogle Scholar
  18. Dreifuss, J. J. and Kelly, J. S., 1972, The activity of identified supraoptic neurones and their response to acetylcholine applied by iontophoresis, J. Physiol. (London) 220:105–118.Google Scholar
  19. Dreifuss, J. J., Tribollet, E., Baertchi, A. J., and Lincoln, D. W., 1976, Mammalian endocrine neurons: Control of phasic activity by antidromic action potentials, Neurosci. Lett. 3:281–286.PubMedCrossRefGoogle Scholar
  20. Dudek, F. E., Hatton, G. I., and MacVicar, B. A., 1980, Intracellular recordings from the paraventricular nucleus in slices of rat hypothalamus, J. Physiol. (London) 301:101–114.Google Scholar
  21. Dyball, R. E. J., 1971, Oxytocin and ADH secretion in relation to electrical activity in antidromically identified supraoptic and paraventricular units, J. Physiol. (London) 214:245–256.Google Scholar
  22. Finlayson, L. H. and Osborne, M. P., 1975, Secretory activity of neurons and related electrical activity, Adv. Comp. Physiol. Biochem. 6:165–258.PubMedGoogle Scholar
  23. Forsling, M. L., 1977, Anti-Diuretic Hormone, Volume 2, Eden Press, Montreal.Google Scholar
  24. Gähwiler, B. H. and Dreifuss, J. J., 1979, Phasically firing neurons in long-term cultures of rat hypothalamic supraoptic area: Pacemaker and follower cells, Brain Res. 177:95–103.PubMedCrossRefGoogle Scholar
  25. Green, D. J. and Gillette, R., 1982, Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice, Brain Res. 245:198–200.PubMedCrossRefGoogle Scholar
  26. Gregory, W. A., Tweedle, C. D., and Hatton, G. I., 1980, Ultrastructure of neurons in the paraventricular nucleus of normal, dehydrated and rehydrated rats, Brain Res. Bull. 5:301–306.PubMedCrossRefGoogle Scholar
  27. Groos, G. A. and Hendriks, J., 1979, Regularly firing neurones in the rat suprachiasmatic nucleus, Experientia 35:1597–1598.PubMedCrossRefGoogle Scholar
  28. Haller, E. W. and Wakerley, J. B., 1980, Electrophysiological studies of paraventricular and supraoptic neurones recorded in vitro from slices of rat hypothalamus, J. Physiol. (London) 302:347–362.Google Scholar
  29. Haller, E. W., Brimble, M. J., and Wakerley, J. B., 1978, Phasic discharge in supraoptic neurones recorded from hypothalamic slices, Exp. Brain Res. 33:131–134.PubMedCrossRefGoogle Scholar
  30. Hatton, G. I., 1976, Nucleus circularis: Is it an osmoreceptor in the brain?, Brain Res. Bull. 1:123–131.PubMedCrossRefGoogle Scholar
  31. Hatton, G. I., 1982, Phasic bursting activity of rat paraventricular neurones in the absence of synaptic transmission, J. Physiol. (London) 327:273–284.Google Scholar
  32. Hatton, G. I., 1983, Some well-kept hypothalamic secrets revealed, Fed. Proc. 42:2869–2874.PubMedGoogle Scholar
  33. Hatton, G. I. and Tweedle, C. D., 1982, Magnocellular neuropeptidergic neurons in hypothalamus: Increases in membrane apposition and number of specialized synapses from pregnancy to lactation, Brain Res. Bull. 8:197–204.PubMedCrossRefGoogle Scholar
  34. Hatton, G. I., Hutton, U. E., Hoblitzell, E. R., and Armstrong, W. E., 1976, Morphological evidence for two populations of magnocellular elements in the rat paraventricular nucleus, Brain Res. 108:187–193.PubMedCrossRefGoogle Scholar
  35. Hatton, G. I., Gregory, W. A., and Armstrong, W. E., 1977, Bursting activity in rat hypothalamic neurosecretory cells in vitro in response to osmotic stimulation, Soc. Neurosci. Abstr. 345: in press.Google Scholar
  36. Hatton, G. I., Armstrong, W. E., and Gregory, W. A., 1978, Spontaneous and osmotically-stimulated activity in slices of rat hypothalamus, Brain Res. Bull. 3:497–508.PubMedCrossRefGoogle Scholar
  37. Hatton, G. I., Doran, A. D., Salm, A. K., and Tweedle, C. D., 1980, Brain slice preparation: Hypothalamus, Brain Res. Bull. 5:405–414.PubMedCrossRefGoogle Scholar
  38. Hatton, G. I., Ho, Y. W., and Mason, W. T., 1983a, Synaptic activation of phasic bursting in rat supraoptic nucleus neurons recorded in hypothalamic slices, J. Physiol (London), 345: in press.Google Scholar
  39. Hatton, G. I., Ho, Y. W., and Mason, W. T., 1983b, Rat supraoptic (SON) neurones have axon collaterals: anatomical and electrophysiological evidence, J. Physiol (London), in press.Google Scholar
  40. Hayward, J. N., 1977, Functional and morphological aspects of hypothalamic neurons, Physiol. Rev. 57:574–658.PubMedGoogle Scholar
  41. Hertz, L., 1977, Drug-induced alterations of ion distribution at the cellular level of the central nervous system, Pharmacol. Rev. 29:35–65.PubMedGoogle Scholar
  42. Hori, T., Nakashima, T., Hori, N., and Kiyohara, T., 1980, Thermo-sensitive neurons in hypothalamic tissue slices in vitro, Brain Res. 186:203–207.PubMedCrossRefGoogle Scholar
  43. Hounsgaard, J. and Nicholson, C., 1981, Dendritic and somatic action potentials in single Purkinje cells change [K+]0 and [Ca2 +]0, Soc. Neurosci. Abstr. 7:225.Google Scholar
  44. Kandel, E. R., 1964, Electrical properties of hypothalamic neuroendocrine cells, J. Gen. Physiol. 47:691–717.PubMedCrossRefGoogle Scholar
  45. Kelso, S. R. and Boulant, J. A., 1982, Effect of synaptic blockade on thermosensitive neurons in hypothalamic tissue slices, Amer. J. Physiol. 243:480–490.Google Scholar
  46. Kelso, S. R., Perlmutter, M. N., and Boulant, J. A., 1982, Thermosensitive single-unit activity of in vitro hypothalamic slices, Am. J. Physiol. 242:R77-R84.PubMedGoogle Scholar
  47. Kita, H., Shibata, S., and Oomura, Y., 1981, Circadian rhythmic changes of SCN neuronal activity in the rat hypothalamic slice, Soc. Neurosci. Abstr. 7:858.Google Scholar
  48. Koizumi, K. and Yamashita, H., 1972, Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recordings, J. Physiol. (London) 221:683–705.Google Scholar
  49. MacVicar, B. A., Andrew, R. D., Dudek, F. E., and Hatton, G. I., 1982, Synaptic inputs and action potentials of magnocellular neuropeptidergic cells: Intracellular recording and staining in slices of rat hypothalamus, Brain Res. Bull. 8:87–93.PubMedCrossRefGoogle Scholar
  50. Mason, W. T., 1980, Supraoptic neurones of rat hypothalamus are osmosensitive, Nature (London) 287:154–157.CrossRefGoogle Scholar
  51. Mason, W. T., 1982, Dye coupling, gap junctions and synchronous unit activity in the rat supraoptic nucleus (SON), J. Physiol. (London) 327:44P.Google Scholar
  52. Mason, C. A. and Bern, H. A., 1977, Cellular biology of the neurosecretory neuron, in: Handbook of Physiology, Section I: The Nervous System, Volume 1 Cellular Biology of Neurons, Part 2 (E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 651–689.Google Scholar
  53. Nicholson, C. and Hounsgaard, J., 1983, Diffusion in the slice microenvironment and implications for physiological studies, Fed. Proc. 42:2865–2868.PubMedGoogle Scholar
  54. Orkand, R. K., 1977, Glial cells, in: Handbook of Physiology, Section I: The Nervous System, Volume I Cellular Biology of Neurons, Part 2. (E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 855–875.Google Scholar
  55. Noble, R. and Wakerley, J. B., 1982, Behavior of phasically active supraoptic neurones in vitro during osmotic challenge with sodium chloride or mannitol, J. Physiol. (London) 327:41P.Google Scholar
  56. Palay, S. L., 1957, The fine structure of the neurohypophysis, in: Ultrastructure and Cellular Chemistry of Neural Tissue (H. Welsch, ed.), Hoeber Press, New York, pp. 31–49.Google Scholar
  57. Peck, J. W. and Novin, D., 1971, Evidence that osmoreceptors mediating drinking in rabbits are in the lateral preoptic area, J. Comp. Physiol. Psychol. 74:134–147.PubMedCrossRefGoogle Scholar
  58. Peterson, R. P., 1966, Magnocellular neurosecretory centers in the rat hypothalamus, J. Comp. Neurol. 128:181–190.PubMedCrossRefGoogle Scholar
  59. Pittman, Q. J., Hatton, J. D., and Bloom, F. E., 1980, Morphine and opioid peptides reduce paraventricular activity: Studies on the rat hypothalamic slice preparation, Proc. Natl. Acad. Sci. USA 77:5527–5531.PubMedCrossRefGoogle Scholar
  60. Pittman, Q. J., Blume, H. W., and Renaud, L. P., 1981, Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: An electrophysiological study in the rat, Brain Res. 215:15–28.PubMedCrossRefGoogle Scholar
  61. Poulain, D. A. and Wakerley, J. B., 1982, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin, Neuroscience 7:773–808.PubMedCrossRefGoogle Scholar
  62. Poulain, D. A., Wakerley, J. B., and Dyball, R. E. J., 1977, Electrophysiological differentiation of oxytocin- and vasopressin-secreting neurons, Proc. R. Soc. London 196:367–384.CrossRefGoogle Scholar
  63. Roberts, J. S., 1977, Oxytocin, Volume 1, Eden Press, Montreal.Google Scholar
  64. Rusak, B. and Zucker, L, 1979, Neural regulation of circadian rhythms, Physiol. Rev. 59:449–526.PubMedGoogle Scholar
  65. Salm, A. K. and Hatton, G. I., 1982, Distribution of met-enkephalin, oxytocin and vaso-pressin-like immunoreactivities in the rat paraventricular nucleus (PVN), Anat. Rec. 202:166A.Google Scholar
  66. Saper, C. B., Lowey, A. D., Swanson, L. W., and Cowan, W. M., 1976, Direct hypoth-alamo-autonomic connections, Brain Res. 117:305–312.PubMedCrossRefGoogle Scholar
  67. Sherlock, D. A., Field, P. M., and Raisman, G., 1975, Retrograde transport of horseradish peroxidase in the magnocellular neurosecretory system of the rat, Brain Res. 88:403–414.PubMedCrossRefGoogle Scholar
  68. Silverman, A. J., Hoffman, D., and Zimmerman, E. A., 1981, The descending afferent connections of the paraventricular nucleus of the hypothalamus (PVN), Brain Res. Bull. 6:47–61.PubMedCrossRefGoogle Scholar
  69. Sladek, C. D. and Joynt, R. J., 1979, Characterization of cholinergic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophyseal system, Endocrinology 104:659–663.PubMedCrossRefGoogle Scholar
  70. Stewart, W. W., 1978, Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer, Cell 14:741–759.PubMedCrossRefGoogle Scholar
  71. Swaab, D. F., Pool, C. W., and Nijveldt, F., 1975, Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophysial system, J. Neural Trans. 36:195–216.CrossRefGoogle Scholar
  72. Swanson, L. W., 1977, Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus, Brain Res. 128:346–353.PubMedCrossRefGoogle Scholar
  73. Theodosis, D. T., Poulain, D. A., and Vincent, J.-D., 1981, Possible morphological bases for synchronisation of neural firing in the rat supraoptic nucleus during lactation, Neuroscience 6:919–929.PubMedCrossRefGoogle Scholar
  74. Tribollet, E. and Dreifuss, J. J., 1981, Localization of neurones projecting to the hypothalamic paraventricular nucleus area of the rat: A horseradish peroxidase study, Neuroscience 6:1315–1328.PubMedCrossRefGoogle Scholar
  75. Tweedle, C. D. and Hatton, G. I., 1976, Ultrastructural comparisons of neurons of supraoptic and circularis nuclei in normal and dehydrated rats, Brain Res. Bull. 1:103–121.PubMedCrossRefGoogle Scholar
  76. Tweedle, C. D. and Hatton, G. I., 1977, Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration, Cell Tissue Res. 181:59–72.PubMedCrossRefGoogle Scholar
  77. Tweedle, C. D. and Hatton, G.I., 1982, Specialized synapses and direct cell-cell apposition in rat supraoptic nucleus: Increases with chronic physiological stimulation, Soc. Neurosci. Abstr. 8:745.Google Scholar
  78. van den Pol, A. N., 1980, The hypothalamic suprachiasmatic nucleus of the rat: Intrinsic anatomy, J. Comp. Neurol. 191:661–702.PubMedCrossRefGoogle Scholar
  79. van den Pol, A. N., 1982, The magnocellular and parvocellular paraventricular nucleus of rat: Intrinsic organization, J. Comp. Neurol. 206:317–345.PubMedCrossRefGoogle Scholar
  80. Vandesande, F. and Dierickx, K., 1975, Identification of the vasopressin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat, Cell Tissue Res. 165:153–162.Google Scholar
  81. Wakerley, J. B. and Lincoln, D. W., 1973, The milk ejection reflex of the rat: A 20- to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release, J. Endocrinol. 57:477–493.PubMedCrossRefGoogle Scholar
  82. Wakerley, J. B., Poulain, D. A., and Brown, D., 1978, Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration, Brain Res. 148:425–440.PubMedCrossRefGoogle Scholar
  83. Wiegand, S. J. and Price, J. L., 1980, The cells of origin of the afferent fibers to the median eminence in the rat, J. Comp. Neurol. 192:1–9.PubMedCrossRefGoogle Scholar
  84. Yarom, Y. and Spira, M. E., 1982, Extracellular potassium ions mediate specific neuronal interaction, Science 216:80–82.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Glenn I. Hatton
    • 1
  1. 1.Department of Psychology, and the Neuroscience ProgramMichigan State UniversityEast LansingUSA

Personalised recommendations