Skip to main content
Book cover

Brain Slices pp 313–339Cite as

Neocortex

Cellular Properties and Intrinsic Circuitry

  • Chapter

Abstract

The neocortex has a striking diversity of cellular morphology. Although histologists have described and catalogued its myriad neuronal forms since the time of Golgi, it is only recently that technical advances in single cell staining have allowed the shape of a cortical cell to be linked with its functional personality (e.g., Kelly and Van Essen, 1974; Christensen and Ebner, 1978; Deschenes et al., 1979; Gilbert and Wiesel, 1979; Lin et al., 1979). These studies are landmark attempts since they represent the convergence of two rich, but basically separate, bodies of knowledge: the structure of single neocortical neurons and their physiological properties. The correlative knowledge to be gained from such an approach will be invaluable to future models of cortical integration (Gilbert and Wiesel, 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger, B. E. and Nicoll, R. A., 1979, GABA-mediated biphasic inhibitory response in hippocampus, Nature (London) 281:315–317.

    Article  CAS  Google Scholar 

  • Asanuma, H. and Rosen, I., 1972, Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey, Exp. Brain Res. 14:243–256.

    Article  PubMed  CAS  Google Scholar 

  • Asanuma, H. and Rosen, I., 1973, Spread of mono- and polysynaptic connections within cat’s motor cortex, Exp. Brain Res. 16:507–520.

    Article  PubMed  CAS  Google Scholar 

  • Benardo, L. S., Masukawa, L. M., and Prince, D. A., 1982, Electrophysiology of isolated hippocampal pyramidal dendrites, J. Neurosci. 2:1614–1622.

    PubMed  CAS  Google Scholar 

  • Bennett, M. V. L., 1977, Electrical transmission: A functional analysis and comparison with chemical transmission, in: Handbook of Physiology, Section I: The Nervous System, Volume 1: Cellular Biology of Neurons (E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 357–416.

    Google Scholar 

  • Bennett, M. V. L., Spray, D. C., and Harris, A. L., 1981, Electrical coupling in development, Am. Zool. 21:413–427.

    CAS  Google Scholar 

  • Benninger, C., Kadis, J., and Prince, D. A., 1980, Extracellular calcium and potassium changes in hippocampal slices, Brain Res. 187:165–182.

    Article  PubMed  CAS  Google Scholar 

  • Benzanilla, F. and Armstrong, C. M., 1972, Negative conductance caused by entry of sodium and cesium into potassium channels of squid axons, J. Gen. Physiol. 60:588–608.

    Article  Google Scholar 

  • Christensen, B. N. and Ebner, F. F., 1978, The synaptic architecture of neurons in opossum somatic sensory-motor cortex: A combined anatomical and physiological study, J. Neurocytol. 7:39–60.

    Article  PubMed  CAS  Google Scholar 

  • Connors, B. W. and Gutnick, M. J., Cellular mechanisms of neocortical epileptogenesis in an acute experimental model, in: Electro-physiology of Epilepsy (P. A. Schwartzkroin and H. Wheal, eds.), Academic Press, in press.

    Google Scholar 

  • Connors, B. W., Gutnick, M. J., and Prince, D. A., 1981, Electrophysiological properties of neocortical neurons maintained in vitro, Soc. Neurosci. Abstr. 7:593.

    Google Scholar 

  • Connors, B. W., Gutnick, M. J., and Prince, D. A., 1982, Electrophysiological properties of neocortical neurons in vitro, J. Neurophysiol. 48:1302–1320.

    PubMed  CAS  Google Scholar 

  • Connors, B. W., Benardo, L. S., and Prince, D. A., 1983, Coupling between neurons of the developing rat neocortex, J. Neurosci. 3:773–782.

    PubMed  CAS  Google Scholar 

  • Courtney, K. R. and Prince, D. A., 1977, Epileptogenesis in neocortical slices, Brain Res. 127:191–196.

    Article  PubMed  CAS  Google Scholar 

  • Deschenes, M., LaBelle, A., and Landry, P., 1979, Morphological characterization of slow and fast pyramidal tract cells in the cat, Brain Res. 178:251–274.

    Article  PubMed  CAS  Google Scholar 

  • Dingledine, R., Dodd, J., and Kelly, J. S., 1981, The in vitro brain slice as a useful neu-rophysiological preparation for intracellular recording, J. Neurosci. Methods 2:323–362.

    Article  Google Scholar 

  • Dudek, F. E., Andrew, R. D., MacVicar, B. A., Snow, R. W., and Taylor, C. P., Recent evidence for and possible significance of gap junctions and electrotonic synapses in the mammalian brain, in: Basic Mechanisms of Neuronal Hyperexcitability (H. H. Jasper and N. M. van Gelder, eds.), Alan R. Liss, Inc., New York, in press.

    Google Scholar 

  • Feldman, M. L. and Peters, A., 1978, The forms of non-pyramidal neurons in the visual cortex of the rat, J. Comp. Neurol. 179:761–794.

    Article  PubMed  CAS  Google Scholar 

  • Futamachi, K. J. and Pedley, T. A., 1976, Glial cells and extracellular potassium: Their relationship in mammalian cortex, Brain Res. 109:311–322.

    Article  PubMed  CAS  Google Scholar 

  • Gabor, A. J., Scobey, R. P., and Wehrli, C. J., 1979, Relationship of epileptogenicity to cortical organization, J. Neurophysiol. 42:1609–1625.

    PubMed  CAS  Google Scholar 

  • Gage, P. W., and Quastel, D. M. J., 1965, Dual effect of potassium on transmitter release, Nature 206:625–626.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, I. M. and McIlwain, H., 1965, Continuous recording of changes in membrane potential in mammalian cerebral tissues in vitro: Recovery after depolarization by added substances, J. Physiol. (London) 176:261–283.

    CAS  Google Scholar 

  • Gilbert, C. D. and Wiesel, T. N., 1979, Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex, Nature (London) 280:120–125.

    Article  CAS  Google Scholar 

  • Gilbert, C. D. and Wiesel, T. N., 1981, Laminar specialization and intracortical connections in cat primary visual cortex, in: The Organization of the Cerebral Cortex (F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, pp. 163–191.

    Google Scholar 

  • Gould, H. J. and Ebner, F. F., 1978, Interlaminar connections of the visual cortex in the hedgehog (Paraechinus hypomelas), J. Comp. Neurol. 177:503–518.

    Article  PubMed  Google Scholar 

  • Gutnick, M. J. and Prince, D. A., 1981, Dye-coupling and possible electrotonic coupling in the guinea pig neocortical slice, Science 211:67–70.

    Article  PubMed  CAS  Google Scholar 

  • Gutnick, M. J., Connors, B. W., and Ransom, B. R., 1981, Dye-coupling between glial cells in the guinea pig neocortical slice, Brain Res. 213:486–492.

    Article  PubMed  CAS  Google Scholar 

  • Gutnick, M. J., Connors, B. W., and Prince, D. A., 1982a, Mechanisms of neocortical epileptogenesis in vitro, J. Neurophysiol 48:1321–1335.

    CAS  Google Scholar 

  • Gutnick, M. J., Grossman, Y., and Carlen, P., 1982b, Epileptogenesis in subdivided neocortical slices, Neurosci. Lett. Supplement 10:5226.

    Google Scholar 

  • Hagiwara, S. and Byerly, L., 1981, Calcium channel, Annu. Rev. Neurosci. 4:69–125.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., Woodhull, A. M., and Shapiro, B. J., 1975, Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions and pH, Philos. Trans. R. Soc. London 270:301–318.

    Article  CAS  Google Scholar 

  • Hillman, H. H. and McIlwain, J., 1961, Membrane potentials in mammalian cerebral tissues in vitro: Dependence on ionic environment, J. Physiol. (London) 157:263–278.

    CAS  Google Scholar 

  • Hillman, H. H., Campbell, W. L., and Mcllwain, H., 1963, Membrane potential in isolated and electrically stimulated mammalian cerebral cortex: Effects of chlorpromazine, cocaine, phenobarbitone, and protamine on the tissue’s electrical and chemical responses to stimulation, J. Neurochem. 10:325–339.

    Article  CAS  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F., and Katz, B., 1952, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol. (London) 116:424–448.

    CAS  Google Scholar 

  • Holtzman, D., Obana, K., and Olson, J., 1981, Hyperthermia-induced seizures in the rat pup: A model for febrile convulsions in children, Science 213:1034–1036.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H. and Wiesel, T. N., 1974, Sequence regularity and geometry of orientation columns in the monkey striate cortex, J. Comp. Neurol. 158:267–294.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H. and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. R. Soc. London, Ser. B. 198:1–59.

    Article  CAS  Google Scholar 

  • Kandel, E. R. and Tauc, L., 1966, Anomalous rectification in the metacerebral giant cells and its consequences for synaptic transmission, J. Physiol. (London) 183:287–304.

    CAS  Google Scholar 

  • Kato, H. and Ogawa, T., 1981, A technique for preparing in vitro slices of cat’s visual cortex for electrophysiological experiments, J. Neurosci. Methods 4:33–38.

    Article  PubMed  CAS  Google Scholar 

  • Kato, H., Ito, Z., Matsuoka, S., and Sakurai, Y., 1973, Electrical activities of neurons in the sliced human cortex in vitro, EEG Clin. Neurophysiol. 35:457–462.

    Article  CAS  Google Scholar 

  • Kelly, J. P. and Van Essen, D. C., 1974, Cell structure and function in the visual cortex of the cat, J. Physiol. (London) 238:515–547.

    CAS  Google Scholar 

  • Knowles, W. D., Funch, P. G., and Schwartzkroin, P. A., 1982, Electrotonic and dye coupling in hippocampal CA1 pyramidal cells in vitro, Neuroscience 7:1713–1722.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu, Y., Toyama, K., Maeda, J., and Sakaguchi, H., 1981, Long-term potentiation investigated in a slice preparation of striate cortex of young kittens, Neurosci. Lett. 26:269–274.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:418–540.

    CAS  Google Scholar 

  • Krnjevic, K. and Schwartz, S., 1967, The action of gamma-aminobutyric acid on cortical neurones, Exp. Brain Res. 3:320–336.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. H. and Mcllwain, H., 1957, Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro, J. Physiol. (London) 139:178–190.

    CAS  Google Scholar 

  • Lin, C.S., Friedlander, J., and Sherman, S. M., 1979, Morphology of physiologically identified neurons in the visual cortex of the cat, Brain Res. 172:344–348.

    Article  PubMed  CAS  Google Scholar 

  • Llinás, R. and Jahnsen, H., 1982, Electrophysiology of mammalian thalamic neurones in vitro, Nature (London) 297:406–408.

    Article  Google Scholar 

  • Llinás, R. and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (London) 305:171–195.

    Google Scholar 

  • Llinás, R. and Yarom, Y., 1981, Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances, J. Physiol. (London) 315:549–567.

    Google Scholar 

  • Lockton, J. W. and Holmes, O., 1980, Site of the initiation of penicillin-induced epilepsy in the cortex cerebri of the rat, Brain Res. 190:301–304.

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó, R., 1938, The cerebral cortex: Architecture, intracortical connections and motor projections, in: Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, Oxford, pp. 291–339.

    Google Scholar 

  • MacVicar, B. A., Ropert, N., and Krnjevic, K., 1982, Dye-coupling between pyramidal cells of the rat hippocampus in vivo, Brain Res. 238:239–244.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, H. and Ajmone-Marsan, C., 1964, Cortical cellular phenomena in experimental epilepsy: Interictal manifestations, Exp. Neurol. 9:286–304.

    Article  PubMed  CAS  Google Scholar 

  • McIlwain, H., 1951, Metabolic response in vitro to electrical stimulation of sections of mammalian brain, Biochem. J. 49:382–393.

    PubMed  CAS  Google Scholar 

  • McIlwain, H. and Ochs, S., 1952, Absence of electrical responses of brain slices on in vitro stimulation, Am. J. Physiol. 171:128–133.

    PubMed  CAS  Google Scholar 

  • Meller, K. and Tetzlaff, W., 1975, Neuronal migration during the early development of the cerebral cortex: A scanning electron microscopic study, Cell Tissue Res. 163:313–325.

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of the cat’s somatic sensory cortex, J. Neurophysiol. 20:408–434.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain (G. M. Edelman and V. B. Mountcastle, eds.), MIT Press, Cambridge, pp. 7–50.

    Google Scholar 

  • Nelson, P. G. and Frank, K., 1967, Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potential, J. Neurophysiol. 30:1097–1113.

    PubMed  CAS  Google Scholar 

  • Nicoll, R. A. and Alger, B. E., 1981, Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells, Science 212:957–959.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, T., Ito, S., and Kato, H., 1981, Membrane characteristics of visual cortical neurons in in vitro slices, Brain Res. 226:315–319.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., 1980, Morphological correlates of epilepsy: Cells in the cerebral cortex, in: Antiepileptic Drugs: Mechanisms of Action (G. H. Glaser, J. K. Penry, and D. M. Woodbury, eds.), Raven Press, New York, pp. 21–48.

    Google Scholar 

  • Prince, D. A., 1968, The depolarization shift in “epileptic” neurons, Exp. Neurol. 21:467–485.

    Article  PubMed  CAS  Google Scholar 

  • Prince, D. A. and Wong, R. K. S., 1981, Human epileptic neurons studied in vitro, Brain Res. 210:323–333.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol. 145:61–84.

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal, S., 1911, Histologie due Système Nerveux de l’homme et des Vertébrés, Volume 2 (translated by L. Azoulay), Maloine, Paris.

    Google Scholar 

  • Richards, C. D., and Mcllwain, H., 1967, Electrical responses in brain samples, Nature (London) 215:704–707.

    Article  CAS  Google Scholar 

  • Rockel, A. J., Hiorns, R. W., and Powell, T. P. S., 1980, The basic uniformity in structure of the neocortex, Brain 103:221–244.

    Article  PubMed  CAS  Google Scholar 

  • Roney, K. J., Scheibel, A. B., and Shaw, G. L., 1979, Dendritic bundles: Survey of anatomical experiments and physiological theories, Brain Res. Rev. 1:225–271.

    Article  Google Scholar 

  • Scholfield, C. N., 1978, Electrical properties of neurones in the olfactory cortex slice in vitro, J. Physiol. (London) 275:535–546.

    CAS  Google Scholar 

  • Schwartzkroin, P. A. and Altschuler, R. J., 1977, Development of kitten hippocampal neurons, Brain Res. 134:429–444.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Kunkel, D. D., 1982, Electrophysiology and morphology of the developing hippocampus of fetal rabbits, J. Neurosci. 2:448–462.

    PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Prince D. A., 1976, Microphysiology of human cerebral cortex studied in vitro, Brain Res. 115:497–500.

    Article  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Slawsky, M., 1977, Probable calcium spikes in hippocampal neurons, Brain Res. 135:157–161.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, C. and Teyler, T. J., 1982, The neural circuitry of the neocortex examined in the in vitro brain slice preparation, Brain Res. 243:35–47.

    Article  PubMed  CAS  Google Scholar 

  • Sloper, J. J. and Powell, T. P. S., 1978, Gap junctions between dendrites and somata of neurones in the primate sensori-motor cortex, Proc. R. Soc. London, Ser. B 203:39–47.

    Article  CAS  Google Scholar 

  • Somjen, G. G., 1979, Extracellular potassium in the mammalian central nervous system, Annu. Rev. Physiol 4:159–177.

    Article  Google Scholar 

  • Stafstrom, C. E., Schwindt, P. C., and Crill, W. E., 1982a, Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro, Brain Res. 236:221–226.

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom, C. E., Schwindt, P. C., Crill, W. E., and Flatman, J. A., 1982b, Membrane currents in cat neocortical neurons in vitro, Soc. Neurosci. Abstr. 8:413.

    Google Scholar 

  • Stewart, W. W., 1978, Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer, Cell 14:741–759.

    Article  PubMed  CAS  Google Scholar 

  • Szentagothai, J., 1978, The neuron network of the cerebral cortex: A functional interpretation, Proc. R. Soc. London, Ser. B 201:219–248.

    Article  CAS  Google Scholar 

  • Takahashi, K., 1965, Slow and fast groups of pyramidal tract cells and their respective membrane properties, J. Neurophysiol. 28:908–924.

    PubMed  CAS  Google Scholar 

  • Teyler, T. J., 1980, Brain slice preparation: Hippocampus, Brain Res. Bull. 5:391–403.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, B. A. and Gorman, A. L. F., 1982, Responses of cortical neurons to stimulation of the corpus callosum in vitro, J. Neurophysiol. 48:1257–1273.

    PubMed  CAS  Google Scholar 

  • Welt, C., Aschoff, J. C., Kameda, K., and Brooks, V. B., 1967, Intracortical organization of cat’s motosensory neurons, in: Symposium on Neurophysiological Basis of Normal and Abnormal Motor Activities (M. D. Yahr and D. P. Purpura, eds), Raven Press, New York, pp. 255–293.

    Google Scholar 

  • Winfield, D. A., Gatter, K. G., and Powell, T. P. S., 1980, An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat, Brain 103:245–258.

    Article  PubMed  CAS  Google Scholar 

  • Wise, S. P. and Jones, E. J., 1978, Developmental studies of thalamocortical and commisural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178:187–208.

    Article  PubMed  CAS  Google Scholar 

  • Woolsey, T. A. and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectural units, Brain Res. 17:205–242.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, C. and Kawai, N., 1967, Origin of the direct cortical response as studied in vitro in thin cortical sections, Experientia 23:821–822.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, C. and McIlwain, H., 1966, Electrical activities in thin sections from the mammalian brain maintained in chemically defined media in vitro, J. Neurochem. 13:1333–1343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Connors, B.W., Gutnick, M.J. (1984). Neocortex. In: Dingledine, R. (eds) Brain Slices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4583-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4583-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4585-5

  • Online ISBN: 978-1-4684-4583-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics