Brain Slices pp 313-339 | Cite as


Cellular Properties and Intrinsic Circuitry
  • Barry W. Connors
  • Michael J. Gutnick


The neocortex has a striking diversity of cellular morphology. Although histologists have described and catalogued its myriad neuronal forms since the time of Golgi, it is only recently that technical advances in single cell staining have allowed the shape of a cortical cell to be linked with its functional personality (e.g., Kelly and Van Essen, 1974; Christensen and Ebner, 1978; Deschenes et al., 1979; Gilbert and Wiesel, 1979; Lin et al., 1979). These studies are landmark attempts since they represent the convergence of two rich, but basically separate, bodies of knowledge: the structure of single neocortical neurons and their physiological properties. The correlative knowledge to be gained from such an approach will be invaluable to future models of cortical integration (Gilbert and Wiesel, 1981).


Visual Cortex Pyramidal Cell Brain Slice Lucifer Yellow Neocortical Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alger, B. E. and Nicoll, R. A., 1979, GABA-mediated biphasic inhibitory response in hippocampus, Nature (London) 281:315–317.CrossRefGoogle Scholar
  2. Asanuma, H. and Rosen, I., 1972, Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey, Exp. Brain Res. 14:243–256.PubMedCrossRefGoogle Scholar
  3. Asanuma, H. and Rosen, I., 1973, Spread of mono- and polysynaptic connections within cat’s motor cortex, Exp. Brain Res. 16:507–520.PubMedCrossRefGoogle Scholar
  4. Benardo, L. S., Masukawa, L. M., and Prince, D. A., 1982, Electrophysiology of isolated hippocampal pyramidal dendrites, J. Neurosci. 2:1614–1622.PubMedGoogle Scholar
  5. Bennett, M. V. L., 1977, Electrical transmission: A functional analysis and comparison with chemical transmission, in: Handbook of Physiology, Section I: The Nervous System, Volume 1: Cellular Biology of Neurons (E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 357–416.Google Scholar
  6. Bennett, M. V. L., Spray, D. C., and Harris, A. L., 1981, Electrical coupling in development, Am. Zool. 21:413–427.Google Scholar
  7. Benninger, C., Kadis, J., and Prince, D. A., 1980, Extracellular calcium and potassium changes in hippocampal slices, Brain Res. 187:165–182.PubMedCrossRefGoogle Scholar
  8. Benzanilla, F. and Armstrong, C. M., 1972, Negative conductance caused by entry of sodium and cesium into potassium channels of squid axons, J. Gen. Physiol. 60:588–608.CrossRefGoogle Scholar
  9. Christensen, B. N. and Ebner, F. F., 1978, The synaptic architecture of neurons in opossum somatic sensory-motor cortex: A combined anatomical and physiological study, J. Neurocytol. 7:39–60.PubMedCrossRefGoogle Scholar
  10. Connors, B. W. and Gutnick, M. J., Cellular mechanisms of neocortical epileptogenesis in an acute experimental model, in: Electro-physiology of Epilepsy (P. A. Schwartzkroin and H. Wheal, eds.), Academic Press, in press.Google Scholar
  11. Connors, B. W., Gutnick, M. J., and Prince, D. A., 1981, Electrophysiological properties of neocortical neurons maintained in vitro, Soc. Neurosci. Abstr. 7:593.Google Scholar
  12. Connors, B. W., Gutnick, M. J., and Prince, D. A., 1982, Electrophysiological properties of neocortical neurons in vitro, J. Neurophysiol. 48:1302–1320.PubMedGoogle Scholar
  13. Connors, B. W., Benardo, L. S., and Prince, D. A., 1983, Coupling between neurons of the developing rat neocortex, J. Neurosci. 3:773–782.PubMedGoogle Scholar
  14. Courtney, K. R. and Prince, D. A., 1977, Epileptogenesis in neocortical slices, Brain Res. 127:191–196.PubMedCrossRefGoogle Scholar
  15. Deschenes, M., LaBelle, A., and Landry, P., 1979, Morphological characterization of slow and fast pyramidal tract cells in the cat, Brain Res. 178:251–274.PubMedCrossRefGoogle Scholar
  16. Dingledine, R., Dodd, J., and Kelly, J. S., 1981, The in vitro brain slice as a useful neu-rophysiological preparation for intracellular recording, J. Neurosci. Methods 2:323–362.CrossRefGoogle Scholar
  17. Dudek, F. E., Andrew, R. D., MacVicar, B. A., Snow, R. W., and Taylor, C. P., Recent evidence for and possible significance of gap junctions and electrotonic synapses in the mammalian brain, in: Basic Mechanisms of Neuronal Hyperexcitability (H. H. Jasper and N. M. van Gelder, eds.), Alan R. Liss, Inc., New York, in press.Google Scholar
  18. Feldman, M. L. and Peters, A., 1978, The forms of non-pyramidal neurons in the visual cortex of the rat, J. Comp. Neurol. 179:761–794.PubMedCrossRefGoogle Scholar
  19. Futamachi, K. J. and Pedley, T. A., 1976, Glial cells and extracellular potassium: Their relationship in mammalian cortex, Brain Res. 109:311–322.PubMedCrossRefGoogle Scholar
  20. Gabor, A. J., Scobey, R. P., and Wehrli, C. J., 1979, Relationship of epileptogenicity to cortical organization, J. Neurophysiol. 42:1609–1625.PubMedGoogle Scholar
  21. Gage, P. W., and Quastel, D. M. J., 1965, Dual effect of potassium on transmitter release, Nature 206:625–626.PubMedCrossRefGoogle Scholar
  22. Gibson, I. M. and McIlwain, H., 1965, Continuous recording of changes in membrane potential in mammalian cerebral tissues in vitro: Recovery after depolarization by added substances, J. Physiol. (London) 176:261–283.Google Scholar
  23. Gilbert, C. D. and Wiesel, T. N., 1979, Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex, Nature (London) 280:120–125.CrossRefGoogle Scholar
  24. Gilbert, C. D. and Wiesel, T. N., 1981, Laminar specialization and intracortical connections in cat primary visual cortex, in: The Organization of the Cerebral Cortex (F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, pp. 163–191.Google Scholar
  25. Gould, H. J. and Ebner, F. F., 1978, Interlaminar connections of the visual cortex in the hedgehog (Paraechinus hypomelas), J. Comp. Neurol. 177:503–518.PubMedCrossRefGoogle Scholar
  26. Gutnick, M. J. and Prince, D. A., 1981, Dye-coupling and possible electrotonic coupling in the guinea pig neocortical slice, Science 211:67–70.PubMedCrossRefGoogle Scholar
  27. Gutnick, M. J., Connors, B. W., and Ransom, B. R., 1981, Dye-coupling between glial cells in the guinea pig neocortical slice, Brain Res. 213:486–492.PubMedCrossRefGoogle Scholar
  28. Gutnick, M. J., Connors, B. W., and Prince, D. A., 1982a, Mechanisms of neocortical epileptogenesis in vitro, J. Neurophysiol 48:1321–1335.Google Scholar
  29. Gutnick, M. J., Grossman, Y., and Carlen, P., 1982b, Epileptogenesis in subdivided neocortical slices, Neurosci. Lett. Supplement 10:5226.Google Scholar
  30. Hagiwara, S. and Byerly, L., 1981, Calcium channel, Annu. Rev. Neurosci. 4:69–125.PubMedCrossRefGoogle Scholar
  31. Hille, B., Woodhull, A. M., and Shapiro, B. J., 1975, Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions and pH, Philos. Trans. R. Soc. London 270:301–318.CrossRefGoogle Scholar
  32. Hillman, H. H. and McIlwain, J., 1961, Membrane potentials in mammalian cerebral tissues in vitro: Dependence on ionic environment, J. Physiol. (London) 157:263–278.Google Scholar
  33. Hillman, H. H., Campbell, W. L., and Mcllwain, H., 1963, Membrane potential in isolated and electrically stimulated mammalian cerebral cortex: Effects of chlorpromazine, cocaine, phenobarbitone, and protamine on the tissue’s electrical and chemical responses to stimulation, J. Neurochem. 10:325–339.CrossRefGoogle Scholar
  34. Hodgkin, A. L., Huxley, A. F., and Katz, B., 1952, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol. (London) 116:424–448.Google Scholar
  35. Holtzman, D., Obana, K., and Olson, J., 1981, Hyperthermia-induced seizures in the rat pup: A model for febrile convulsions in children, Science 213:1034–1036.PubMedCrossRefGoogle Scholar
  36. Hubel, D. H. and Wiesel, T. N., 1974, Sequence regularity and geometry of orientation columns in the monkey striate cortex, J. Comp. Neurol. 158:267–294.PubMedCrossRefGoogle Scholar
  37. Hubel, D. H. and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. R. Soc. London, Ser. B. 198:1–59.CrossRefGoogle Scholar
  38. Kandel, E. R. and Tauc, L., 1966, Anomalous rectification in the metacerebral giant cells and its consequences for synaptic transmission, J. Physiol. (London) 183:287–304.Google Scholar
  39. Kato, H. and Ogawa, T., 1981, A technique for preparing in vitro slices of cat’s visual cortex for electrophysiological experiments, J. Neurosci. Methods 4:33–38.PubMedCrossRefGoogle Scholar
  40. Kato, H., Ito, Z., Matsuoka, S., and Sakurai, Y., 1973, Electrical activities of neurons in the sliced human cortex in vitro, EEG Clin. Neurophysiol. 35:457–462.CrossRefGoogle Scholar
  41. Kelly, J. P. and Van Essen, D. C., 1974, Cell structure and function in the visual cortex of the cat, J. Physiol. (London) 238:515–547.Google Scholar
  42. Knowles, W. D., Funch, P. G., and Schwartzkroin, P. A., 1982, Electrotonic and dye coupling in hippocampal CA1 pyramidal cells in vitro, Neuroscience 7:1713–1722.PubMedCrossRefGoogle Scholar
  43. Komatsu, Y., Toyama, K., Maeda, J., and Sakaguchi, H., 1981, Long-term potentiation investigated in a slice preparation of striate cortex of young kittens, Neurosci. Lett. 26:269–274.PubMedCrossRefGoogle Scholar
  44. Krnjevic, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54:418–540.Google Scholar
  45. Krnjevic, K. and Schwartz, S., 1967, The action of gamma-aminobutyric acid on cortical neurones, Exp. Brain Res. 3:320–336.PubMedCrossRefGoogle Scholar
  46. Li, C. H. and Mcllwain, H., 1957, Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro, J. Physiol. (London) 139:178–190.Google Scholar
  47. Lin, C.S., Friedlander, J., and Sherman, S. M., 1979, Morphology of physiologically identified neurons in the visual cortex of the cat, Brain Res. 172:344–348.PubMedCrossRefGoogle Scholar
  48. Llinás, R. and Jahnsen, H., 1982, Electrophysiology of mammalian thalamic neurones in vitro, Nature (London) 297:406–408.CrossRefGoogle Scholar
  49. Llinás, R. and Sugimori, M., 1980, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (London) 305:171–195.Google Scholar
  50. Llinás, R. and Yarom, Y., 1981, Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances, J. Physiol. (London) 315:549–567.Google Scholar
  51. Lockton, J. W. and Holmes, O., 1980, Site of the initiation of penicillin-induced epilepsy in the cortex cerebri of the rat, Brain Res. 190:301–304.PubMedCrossRefGoogle Scholar
  52. Lorente de Nó, R., 1938, The cerebral cortex: Architecture, intracortical connections and motor projections, in: Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, Oxford, pp. 291–339.Google Scholar
  53. MacVicar, B. A., Ropert, N., and Krnjevic, K., 1982, Dye-coupling between pyramidal cells of the rat hippocampus in vivo, Brain Res. 238:239–244.PubMedCrossRefGoogle Scholar
  54. Matsumoto, H. and Ajmone-Marsan, C., 1964, Cortical cellular phenomena in experimental epilepsy: Interictal manifestations, Exp. Neurol. 9:286–304.PubMedCrossRefGoogle Scholar
  55. McIlwain, H., 1951, Metabolic response in vitro to electrical stimulation of sections of mammalian brain, Biochem. J. 49:382–393.PubMedGoogle Scholar
  56. McIlwain, H. and Ochs, S., 1952, Absence of electrical responses of brain slices on in vitro stimulation, Am. J. Physiol. 171:128–133.PubMedGoogle Scholar
  57. Meller, K. and Tetzlaff, W., 1975, Neuronal migration during the early development of the cerebral cortex: A scanning electron microscopic study, Cell Tissue Res. 163:313–325.PubMedCrossRefGoogle Scholar
  58. Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of the cat’s somatic sensory cortex, J. Neurophysiol. 20:408–434.PubMedGoogle Scholar
  59. Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain (G. M. Edelman and V. B. Mountcastle, eds.), MIT Press, Cambridge, pp. 7–50.Google Scholar
  60. Nelson, P. G. and Frank, K., 1967, Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potential, J. Neurophysiol. 30:1097–1113.PubMedGoogle Scholar
  61. Nicoll, R. A. and Alger, B. E., 1981, Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells, Science 212:957–959.PubMedCrossRefGoogle Scholar
  62. Ogawa, T., Ito, S., and Kato, H., 1981, Membrane characteristics of visual cortical neurons in in vitro slices, Brain Res. 226:315–319.PubMedCrossRefGoogle Scholar
  63. Peters, A., 1980, Morphological correlates of epilepsy: Cells in the cerebral cortex, in: Antiepileptic Drugs: Mechanisms of Action (G. H. Glaser, J. K. Penry, and D. M. Woodbury, eds.), Raven Press, New York, pp. 21–48.Google Scholar
  64. Prince, D. A., 1968, The depolarization shift in “epileptic” neurons, Exp. Neurol. 21:467–485.PubMedCrossRefGoogle Scholar
  65. Prince, D. A. and Wong, R. K. S., 1981, Human epileptic neurons studied in vitro, Brain Res. 210:323–333.PubMedCrossRefGoogle Scholar
  66. Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol. 145:61–84.PubMedCrossRefGoogle Scholar
  67. Ramón y Cajal, S., 1911, Histologie due Système Nerveux de l’homme et des Vertébrés, Volume 2 (translated by L. Azoulay), Maloine, Paris.Google Scholar
  68. Richards, C. D., and Mcllwain, H., 1967, Electrical responses in brain samples, Nature (London) 215:704–707.CrossRefGoogle Scholar
  69. Rockel, A. J., Hiorns, R. W., and Powell, T. P. S., 1980, The basic uniformity in structure of the neocortex, Brain 103:221–244.PubMedCrossRefGoogle Scholar
  70. Roney, K. J., Scheibel, A. B., and Shaw, G. L., 1979, Dendritic bundles: Survey of anatomical experiments and physiological theories, Brain Res. Rev. 1:225–271.CrossRefGoogle Scholar
  71. Scholfield, C. N., 1978, Electrical properties of neurones in the olfactory cortex slice in vitro, J. Physiol. (London) 275:535–546.Google Scholar
  72. Schwartzkroin, P. A. and Altschuler, R. J., 1977, Development of kitten hippocampal neurons, Brain Res. 134:429–444.PubMedCrossRefGoogle Scholar
  73. Schwartzkroin, P. A. and Kunkel, D. D., 1982, Electrophysiology and morphology of the developing hippocampus of fetal rabbits, J. Neurosci. 2:448–462.PubMedGoogle Scholar
  74. Schwartzkroin, P. A. and Prince D. A., 1976, Microphysiology of human cerebral cortex studied in vitro, Brain Res. 115:497–500.CrossRefGoogle Scholar
  75. Schwartzkroin, P. A. and Slawsky, M., 1977, Probable calcium spikes in hippocampal neurons, Brain Res. 135:157–161.PubMedCrossRefGoogle Scholar
  76. Shaw, C. and Teyler, T. J., 1982, The neural circuitry of the neocortex examined in the in vitro brain slice preparation, Brain Res. 243:35–47.PubMedCrossRefGoogle Scholar
  77. Sloper, J. J. and Powell, T. P. S., 1978, Gap junctions between dendrites and somata of neurones in the primate sensori-motor cortex, Proc. R. Soc. London, Ser. B 203:39–47.CrossRefGoogle Scholar
  78. Somjen, G. G., 1979, Extracellular potassium in the mammalian central nervous system, Annu. Rev. Physiol 4:159–177.CrossRefGoogle Scholar
  79. Stafstrom, C. E., Schwindt, P. C., and Crill, W. E., 1982a, Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro, Brain Res. 236:221–226.PubMedCrossRefGoogle Scholar
  80. Stafstrom, C. E., Schwindt, P. C., Crill, W. E., and Flatman, J. A., 1982b, Membrane currents in cat neocortical neurons in vitro, Soc. Neurosci. Abstr. 8:413.Google Scholar
  81. Stewart, W. W., 1978, Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer, Cell 14:741–759.PubMedCrossRefGoogle Scholar
  82. Szentagothai, J., 1978, The neuron network of the cerebral cortex: A functional interpretation, Proc. R. Soc. London, Ser. B 201:219–248.CrossRefGoogle Scholar
  83. Takahashi, K., 1965, Slow and fast groups of pyramidal tract cells and their respective membrane properties, J. Neurophysiol. 28:908–924.PubMedGoogle Scholar
  84. Teyler, T. J., 1980, Brain slice preparation: Hippocampus, Brain Res. Bull. 5:391–403.PubMedCrossRefGoogle Scholar
  85. Vogt, B. A. and Gorman, A. L. F., 1982, Responses of cortical neurons to stimulation of the corpus callosum in vitro, J. Neurophysiol. 48:1257–1273.PubMedGoogle Scholar
  86. Welt, C., Aschoff, J. C., Kameda, K., and Brooks, V. B., 1967, Intracortical organization of cat’s motosensory neurons, in: Symposium on Neurophysiological Basis of Normal and Abnormal Motor Activities (M. D. Yahr and D. P. Purpura, eds), Raven Press, New York, pp. 255–293.Google Scholar
  87. Winfield, D. A., Gatter, K. G., and Powell, T. P. S., 1980, An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat, Brain 103:245–258.PubMedCrossRefGoogle Scholar
  88. Wise, S. P. and Jones, E. J., 1978, Developmental studies of thalamocortical and commisural connections in the rat somatic sensory cortex, J. Comp. Neurol. 178:187–208.PubMedCrossRefGoogle Scholar
  89. Woolsey, T. A. and Van der Loos, H., 1970, The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectural units, Brain Res. 17:205–242.PubMedCrossRefGoogle Scholar
  90. Yamamoto, C. and Kawai, N., 1967, Origin of the direct cortical response as studied in vitro in thin cortical sections, Experientia 23:821–822.PubMedCrossRefGoogle Scholar
  91. Yamamoto, C. and McIlwain, H., 1966, Electrical activities in thin sections from the mammalian brain maintained in chemically defined media in vitro, J. Neurochem. 13:1333–1343.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Barry W. Connors
    • 1
  • Michael J. Gutnick
    • 2
  1. 1.Department of NeurologyStanford University School of MedicineStanfordUSA
  2. 2.Unit of Physiology, Faculty of Health SciencesBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations