Brain Slices pp 263-284 | Cite as

Probing the Extracellular Space of Brain Slices with Ion-Selective Microelectrodes

  • Jørn Hounsgaard
  • Charles Nicholson


In this chapter, we illustrate the use of ion-selective microelectrodes (ISMs) in brain slices. We have confined ourselves to extracellular K+ measurements since these have been at the focus of our interests, although intracellular measurements are becoming feasible (see Syková et al., 1981).


Purkinje Cell Extracellular Space Brain Slice Cerebellar Cortex Bergmann Glia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alger, B. E. and Teyler, T. J., 1978, Potassium and short-term response plasticity in the hippocampal slice, Brain Res. 159:239–242.PubMedCrossRefGoogle Scholar
  2. Alkon, D. L. and Grossman, Y., 1978, Evidence for nonsynaptic neuronal interaction, J. Neurophysiol. 41:640–653.PubMedGoogle Scholar
  3. Baylor, D. A. and Nicholls, J. G., 1969, Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech, J. Physiol (London) 203:555–569.Google Scholar
  4. Benninger, C., Kadis, J., and Prince, D. A., 1980, Extracellular calcium and potassium changes in hippocampal slices, Brain Res. 187:165–182.PubMedCrossRefGoogle Scholar
  5. Bruggencate, G. ten, Nicholson, C., and Stockle, H., 1976, Climbing fiber evoked potassium release in cat cerebellum, Pflügers Arch. 367:107–109.PubMedCrossRefGoogle Scholar
  6. Dietzel, I., Heinemann, U., Hofmeier, G., and Lux, H. D., 1980, Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration, Exp. Brain Res. 40:432–439.PubMedCrossRefGoogle Scholar
  7. Ebner, T. J. and Bloedel, J. R., 1981, Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber input, J. Neurophysiol. 45:962–971.PubMedGoogle Scholar
  8. Ebner, T. J. and Bloedel, J. R., 1981, Temporal patterning in simple spike discharge of Purkinje cells and its relationship to climbing fiber activity, J. Neurophysiol. 45:933–947.PubMedGoogle Scholar
  9. Eccles, J. C., Ito, M., and Szentagothai, J., 1967, The Cerebellum as a Neuronal Machine, Springer-Verlag, Berlin.Google Scholar
  10. Frankenheuser, B. and Hodgkin, A. L., 1956, The after-effects of impulses in the giant nerve fibers of loligo, J. Physiol. (London) 131:341–376.Google Scholar
  11. Fritz, L. C. and Gardner-Medwin, A. R., 1976, The effects of synaptic activation on the extracellular potassium concentration in the hippocampal dentate area, in vitro, Brain Res. 112:183–187.PubMedCrossRefGoogle Scholar
  12. Gorman, A. L. F. and Hermann, A., 1979, Internal effects of divalent cations on potassium permeability in molluscan neurons, J. Physiol. (London) 296:393–340.Google Scholar
  13. Gutnik, M. J. and Segal, M., 1981, Serotonin and GABA-induced fluctuations in extracellular ion concentration in the hippocampal slice, in: Ion-Selective Microelectrodes and Their Use in Excitable Tissues (E. Syková, P. Hnik, and L. Vyklicky, eds.), Plenum Press, New York, pp. 261–265.CrossRefGoogle Scholar
  14. Hagiwara, S., Fukuda, J., and Eaton, D. C., 1974, Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J. Gen. Physiol. 63:564–578.PubMedCrossRefGoogle Scholar
  15. Hansen, A. J. and Olsen, C. E., 1980, Brain extracellular space during spreading depression and ischemia, Acta Physiol. Scand. 108:355–365.PubMedCrossRefGoogle Scholar
  16. Heinemann, U. and Lux, H. D., 1975, Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat, Brain Res. 93:63–76.PubMedCrossRefGoogle Scholar
  17. Hosli, L., Andres, P. F., and Hosli, E., 1978, Neuronglia interactions: Indirect effects of GABA on cultured glial cells, Exp. Brain Res. 33:425–434.PubMedCrossRefGoogle Scholar
  18. Hounsgaard, J., 1979, Pacemaker properties of mammalian Purkinje cells, Acta Physiol. Scand. 106:91–92.PubMedCrossRefGoogle Scholar
  19. Hounsgaard, J. and Nicholson, C., 1983, Potassium accumulation around individual Purkinje cells in cerebella slices, J. Physiol. (London) 340:359–388.Google Scholar
  20. Kleine, R. P. and Kupersmith, J., 1982, Effects of extracellular potassium accumulation and sodium pump activation on automatic canine Purkinje fibers, J. Physiol. (London), 324:507–533.Google Scholar
  21. King, G. L. and Somjen, G. G., 1981, Extracellular calcium and action potentials of soma and dendrites of hippocampal pyramidal cells, Brain Res. 226:339–343.PubMedCrossRefGoogle Scholar
  22. Kuffler, S. W. and Nicholls, J. C., 1966, The physiology of neuroglia cells, Ergeb. Physiol. Biol. Chem. Exp. 57:1–90.Google Scholar
  23. Llinás, R. and Sugimori, M., 1980a. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (London) 305:171–195.Google Scholar
  24. Llinás, R. and Sugimori, M., 1980b, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (London) 305:197–213.Google Scholar
  25. Llinás, R. and Sugimori, M., 1982, Functional significance of the climbing fiber input to Purkinje cells: An in vitro study in mammalian cerebellar slices, in: The CerebellumNew Vistas (S. L. Palay and V. Chan-Palay, eds.), Springer-Verlag, Berlin—Heidelberg—New York, pp. 403–411.Google Scholar
  26. Malenka, R. C., Kocsis, J. D., Ransom, B. R., and Waxman, S. G., 1981, Modulation of parallel fiber excitability by postsynaptically mediated changes in extracellular potassium, Science 214:339–341.PubMedCrossRefGoogle Scholar
  27. Nicholson, C., 1979, Brain cell microenvironment as a communication channel, in: The Neurosciences: Fourth Study Program (F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, Mass.Google Scholar
  28. Nicholson, C., 1980, Dynamics of the brain cell microenvironment, Neurosci. Res. Prog. Bull. 18:177–322.Google Scholar
  29. Nicholson, C. and Hounsgaard, J., 1983, Diffusion in the slice microenvironment and implications for physiological studies, Fed. Proc, 42:2865–2868.PubMedGoogle Scholar
  30. Nicholson, C. and Phillips, J. M., 1981, Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum, J. Physiol. (London) 321:225–258.Google Scholar
  31. Nicholson, C., Bruggencate, G. ten, Stöckle, H., and Steinberg, R., 1978, Calcium and potassium changes in extracellular microenvironment of cat cerebellar cortex, J. Neu-rophysiol. 41:1026–1039.Google Scholar
  32. Nicholson, C., Phillips, J. M., Tobiasz, C., and Kraig, R. P., 1981, Extracellular potassium, calcium and volume profiles during spreading depression, in: Ion-Selective Microelectrodes and Their Use in Excitable Tissues, (E. Syková, P. Hnik, and L. Vyklicky, eds.), Plenum Press, New York, pp. 211–223.CrossRefGoogle Scholar
  33. Palay, S. L. and Chan-Palay, V., 1974, Cerebellar Cortex, Springer-Verlag, New York.CrossRefGoogle Scholar
  34. Phillips, J. M. and Nicholson, C., 1979, Anion permeability in spreading depression investigated with ion sensitive microelectrodes, Brain Res. 173:567–571.PubMedCrossRefGoogle Scholar
  35. Scheibel, M. E. and Scheibel, A. B., 1975, Dendrites as neuronal couples: The dendrite bundle, in: Golgi Centennial Symposium Proceedings (M. Santini, ed.), Raven Press, New York, pp. 347–354.Google Scholar
  36. Schmitt, F. O. and Samson, F. E., Jr., 1969, Brain cell microenvironment, Neurosci. Res. Program Bull. 7:177–417.Google Scholar
  37. Stöckle, H. and Bruggencate, G. ten, 1980. Fluctuation of extracellular potassium and calcium in the cerebellar cortex related to climbing fiber activity, Neuroscience 5:893–901.PubMedCrossRefGoogle Scholar
  38. Syková, E., Hnik, P., and Vyklicky, L., eds., 1981, Ion-Selective Microelectrodes and Their Use in Excitable Tissues. Plenum Press, New York.Google Scholar
  39. Werman, R., 1972, CNS cellular level: Membranes, Annu. Rev. Physiol. 34:337–374.PubMedCrossRefGoogle Scholar
  40. Yamamoto, C., 1974, Electrical activity observed in vitro in thin sections from guinea pig cerebellum, Jpn. J. Physiol. 24:177–188.PubMedCrossRefGoogle Scholar
  41. Yamamoto, C. and Chujo, T., 1978, Visualization of central neurons and recording of action potentials, Exp. Brain Res. 31:299–301.PubMedCrossRefGoogle Scholar
  42. Yarom, Y. and Spira, M. E., 1982, Extracellular potassium ions mediate specific neuronal interaction, Science 216:80–82.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jørn Hounsgaard
    • 1
  • Charles Nicholson
    • 2
  1. 1.Department of Neurophysiology, Partum InstituteUniversity of CopenhagenCopenhagen NDenmark
  2. 2.Department of Physiology and BiophysicsNew York University Medical CenterNew YorkUSA

Personalised recommendations