Gasification and Indirect Liquefaction

  • James C. W. Kuo

Abstract

To produce liquid fuels from coal, either direct or indirect liquefaction routes can be used. The discussion of the former route is the subject of Chapter 6; the latter route will be discussed here. The indirect liquefaction route consists of the conversion of coal to synthesis gas (hydrogen plus carbon monoxide), and then the conversion of the synthesis gas to liquid fuels, such as alcohols or hydrocarbons. The major processing steps include the following:
  • Coal gasification using steam and oxygen to form hydrogen and carbon monoxide.

  • Synthesis gas purification to remove particulate matter, carbon dioxide, ammonia, hydrogen sulfide, carbonyl sulfide, and other undesirable impurities.

  • A water-gas shift process to react some carbon monoxide with steam to give hydrogen.

  • The removal of carbon dioxide formed in the water-gas shift process.

  • Synthesis gas conversion to form alcohols or hydrocarbons.

  • Final product upgrading to convert the alcohols or hydrocarbons obtained from the synthesis gas conversion step into some specific marketable products.

Keywords

Burner Methane Sulfide Drilling Paraffin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. B., 1953, Iron nitrides as Fischer-Tropsch catalysts, in: Advances in Catalysis, Vol. 5, Academic Press, New York, New York, pp. 355–384.CrossRefGoogle Scholar
  2. Anderson, R. B., Seligman, B., Shultz, J. F., Kelly, R. E., and Elliot, M. A., 1952, Fischer-Tropsch synthesis, Ind. Eng. Chem. 44:391–401.CrossRefGoogle Scholar
  3. Auer, W., 1971, A new catalyst for the CO-shift conversion of sulfur-containing gases, paper presented at the 68th National Meeting of the AIChE, Houston, Texas (February 1971).Google Scholar
  4. Badische Anilin- und Soda-Fabrik, 1913, Hydrocarbons and their derivatives, German Patent 293,787 (March 8, 1913).Google Scholar
  5. Baird, M. J., Schehl, R. R., Haynes, W. P., and Cobb, J. T., Jr., 1980, Fischer-Tropsch processes investigated at the Pittsburgh Energy Technology Center since 1944, IE&C Prod. Res. Dev. 19:175–191.CrossRefGoogle Scholar
  6. Benson, H. E., and Parrish, R. W., 1974, HiPure process removes CO2/H2S, Hydrocarbon Process. 53(4):81–82.Google Scholar
  7. Bloom, R., Jr., and Eddinger, T., Status of the COGAS process, paper presented at the sixth AGA Synthetic Pipeline Gas Symposium, Chicago, Illinois (October 28–30, 1974).Google Scholar
  8. Brennan, J. A., Garwood, W. E., Yurchak, S., and Lee, W., 1981, Conversion of methanol and synthesis gas to hydrocarbons over ZSM-5, paper presented at Seminaire International Combustibles de Remplacement at Liege, Belgium (May 25–27, 1981).Google Scholar
  9. Broetz, W., 1949, Zur Systematik der Fischer-Tropsch-Katalyse, Z. Elecktrochemie 53:301–306.Google Scholar
  10. Bucklin, R. W., 1978, Removal of hydrogen sulfide from natural gas by DGA, Oil Gas J. 76(29):71–73.Google Scholar
  11. Bureau of Mines, 1976, Preliminary economic analysis of IGT Hygas plant producing 250 million SCFD high-BTU gas from two coal seams: Montana & Pittsburgh, Bureau of Mines, Morgan-town, West Virginia, ERDA 76–47 (March 1976).Google Scholar
  12. Caesar, P. D., Brennan, J. A., Garwood, W. E., and Ciric, J., 1979, Advances in Fischer-Tropsch chemistry, J. Catal. 56:274–278.CrossRefGoogle Scholar
  13. Chandra, K., McElmurry, B., Neben, E. W., and Pack, G. E., 1978, Economic studies of coal gasification for combined cycle systems for electric power generation, Fluor Engineers and Constructors, Inc., EPRI AF-642 (January 1978).Google Scholar
  14. Chang, C. D., and Silvestri, A. J., 1977, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, J. Catal. 47:249–259.CrossRefGoogle Scholar
  15. Cohn, E. M., 1956, The isosynthesis, in: Catalysis, Vol. IV, (Emmett, P. H., ed.), Reinhold Publishing Corp., New York, New York, pp. 443–472.Google Scholar
  16. Crowley, A. W., Kuebrich, J. P., Roberts, M. A., Koehl, W. J., Wascher, W. L., and Wotring, W. T., 1975, Methanol-gasoline blends—Performance in laboratory tests and in vehicles, Paper 750419, Automotive Engineering Congress and Exposition, SAE, Detroit, Michigan (February 1975).CrossRefGoogle Scholar
  17. Dailey, L. W., 1970, Status of SNPA-DEA, Oil Gas J. 72(25):120–122.Google Scholar
  18. Davies, P., and Snowdon, F. F., 1967, Production of Oxygenated Hydrocarbons, U.S. Patent 3,326,956 (June 20, 1967).Google Scholar
  19. Detman, R., 1976, Factored estimates for western coal commercial concepts, C. F. Braun & Co., FE-2240–5 (October 1976).Google Scholar
  20. Dravo Corp., 1976, Handbook of gasifiers and gas treatment systems, Dravo Corp., DOC Report FE-1772–11 (February 1976).Google Scholar
  21. Dry, M. E., 1976, Advance in Fischer-Tropsch chemistry, IE&C Prod. Res. Dev. 15:282–286.CrossRefGoogle Scholar
  22. Duftschmid, F., Linckh, E., and Winkler, F., 1939, Catalytic Production of Hydrocarbons and Oxygen Derivatives from Carbon Monoxide and Hydrogen, U.S. Patent 2,159,077 (May 23, 1939).Google Scholar
  23. Faragher, W., and Foucher, J., 1947, The CO + H2 synthesis at I. G. Farben, in: F.I.A.T. Final Report 1267, PB 97368, Vol. 1, Part C, pp. 123.Google Scholar
  24. Fink, C. E., Curran, G. P., and Sudbury, J. D., 1975, CO2 Acceptor process pilot plant—1975, Paper presented at the Seventh Synthetic Pipeline Gas Symposium, Chicago, Illinois (October 1975).Google Scholar
  25. Fischer, F., Roelin, O., and Feisst, W., 1932, Ueber den nunmehr erreichten technischen Stand der Benzinsynthese, Bren. Chem. 13:461–480.Google Scholar
  26. Fischer, F., and Tropsch, H., 1923, The preparation of synthetic oil mixture (Synthol) from carbon monoxide and hydrogen, Bren Chem. 4:276–285.Google Scholar
  27. Fischer, F., and Tropsch, H., 1926, The synthesis of petroleum at atmospheric pressures from gasification products of coal, Bren. Chem. 7:97–104.Google Scholar
  28. Flory, P. J., 1967, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York.Google Scholar
  29. Fuessmann, G., and Gernhardt, P., 1978, High-pressure coal gasification with the Saarberg/Otto gasifier, Paper presented at Coal Refining Symposium at Edmonton, Canada (April 20–21, 1978).Google Scholar
  30. Goar, B. G., 1969, Sulfinol process has several key advantages, Oil Gas J. 67(26):117–120.Google Scholar
  31. Goodridge, F., 1967, The water-gas shift reaction: A comparison of industrial catalysts, Trans.Inst. Chem. Engrs. 45:T274–279.Google Scholar
  32. Grant, A. J., and Hemingway, M. J., 1974, Low- and medium-BTU gas—The WD/GI process, Paper presented at the IGT Symposium of Efficient Use of Fuels in the Metallurgical Industries (December 1974).Google Scholar
  33. Gray, D., Lytton, M., Neuworth, M., and Tomlinson, G., 1980, The impact of developing technology on indirect liquefaction, MITRE Corp. Report MTR-80W326 (DOE Contract No.: EF-77-C-01–2783).Google Scholar
  34. Gray, R. W., 1980, Status reports on synthetic fuels projects, in: Coal Processing Technology, Volume VI, A CEP Technical Manual (AIChE Publication), New York, New York, pp. 179–185.Google Scholar
  35. Hall, C. C., Gall, D., and Smith, S. L., 1952, A comparison on the fixed-bed, liquid-phase (“slurry”) and fluidized-bed techniques in the Fischer-Tropsch synthesis, J. Inst. Pet. Technologists 38:845–875.Google Scholar
  36. Hochgesand, G., 1970, Rectisol and Purisol, Ind. Eng. Chem. 62(7):37–43.CrossRefGoogle Scholar
  37. Hoogendoorn, J. C., 1973, Experience with Fischer-Tropsch synthesis at SASOL, in: Clean Fuelsfrom Coal Symposium Papers, IGT, Chicago, Illinois (September 10–14, 1973), pp. 353–365.Google Scholar
  38. Hoogendoorn, J. C., 1975, New applications of the Fischer-Tropsch process, in: Clean Fuels fromCoal Symposium II Papers, IGT, Chicago, Illinois (June 23–27, 1975), pp. 343–358.Google Scholar
  39. Hoogendoorn, J. C., and Salomon, J. H., 1957a, SASOL: World’s largest oil-from-coal plant, Brit.Chem. Eng. 2:308–312.Google Scholar
  40. Hoogendoorn, J. C., and Salomon, J. H., 1957b, SASOL: World’s largest oil-from-coal plant, Brit.Chem. Eng. 2:368–373.Google Scholar
  41. Huang, T. J., and Haag, W. O., 1981, Aromatic gasoline from hydrogen/carbon monoxide over ruthenium/zeolite catalysts, in: Catalyst Activation of Carbon Monoxide (Ford, P. C., ed.), ACS Symposium Series 152.Google Scholar
  42. Jahnig, C. E., 1975, Evaluation of pollution control in fossil fuel conversion processes—gasification, Section 8: Winkler process, Exxon Res. & Eng. Corp., PB-249–846 (September 1975).Google Scholar
  43. Johnson, B. C., Schbert, H. H., and Fegley, M. M., 1978, The Grand Forks slagging gasifier, in: Coal Processing Technology, Volume IV, A CEP Technical Manual (AIChE Publication), New York, New York, pp. 94–98.Google Scholar
  44. Judd, D. K., 1978, Selexol unit saves energy, Hydrocarbon Process. 57(4):122–124.Google Scholar
  45. Kam, A. Y., and Lee, W., 1978, Fluid bed process studies on selective conversion of methanol to high octane gasoline, Mobil Res. & Dev. Corp., DOE FE-2490–15 (April 1978).Google Scholar
  46. Kam, A. Y., Yurchak, S., and Lee, W., 1978, Fluid bed process scale-up and development studies on selective conversion of methanol to high octane gasoline, Paper presented at 71st Annual AIChE Meeting, Miami, Florida (November 1978).Google Scholar
  47. Kastens, M. L., Hirst, L. L., and Dressier, R. G., 1952, An American Fischer-Tropsch plant, Ind.Eng. Chem. 44:450–466.CrossRefGoogle Scholar
  48. Kirk-Othmer (ed.), 1964, Carbon monoxide-hydrogen reactions, in: Encyclopedia of Chemical Technology, Vol. 4, John Wiley & Sons, New York, New York, pp. 446–489.Google Scholar
  49. Kirk-Othmer (ed.), 1980, Methanol, in: Encyclopedia of Chemical Technology, Vol. 15, John Wiley & Sons, New York, New York, pp. 398–415.Google Scholar
  50. Koelbel, H., Ackermann, P., and Englehardt, F., 1955, New development in hydrocarbon synthesis, in: Proceedings, 4th World Petroleum Congress, Rome, Italy (June 6–15, 1955), pp. 227–247.Google Scholar
  51. Koelbel, H., and Ralek, M., 1980, The Fischer-Tropsch synthesis in the liquid phase, Cat. Rev.Sci. Eng. 21:225–274.CrossRefGoogle Scholar
  52. Kuo, J. C. W., 1977, Method for upgrading Fischer-Tropsch synthesis products. U.S. Patent 4,046,830 (September 6, 1977).Google Scholar
  53. Kuo, J. C. W., Prater, C. D., and Wise, J. J., 1977a, Method for upgrading products of Fischer-Tropsch synthesis, U.S. Patent 4,041,094 (August 9, 1977).Google Scholar
  54. Kuo, J. C. W., Prater, C. D., and Wise, J. J., 1977b, Method for upgrading Fischer-Tropsch synthesis products, U.S. Patent 4,049,741 (September 20, 1977).Google Scholar
  55. Lamb, G. H., 1977, Underground Coal Gasification, Noyes Data Corp., Park Ridge, New Jersey.Google Scholar
  56. Lewis, J. L., Truby, H. A., and Pascoo, M. B., 1974, New process boosts synthesis gas plant reliability, Oil Gas J. 72(25):120–122.Google Scholar
  57. Liederman, D., Yurchak, S., Kuo, J. C. W., and Lee, W., 1980, Mobil methanol-to-gasoline process, Paper presented at the 15th Intersociety Energy Conversion Engineering Conference in Seattle, Washington (August 18–22, 1980).Google Scholar
  58. Lowry, H. H. (ed.), 1945, Chemistry of Coal Utilization, Volume 2, John Wiley & Sons, New York, New York.Google Scholar
  59. Mason, R. Z., and Hegarty, P., 1979, The chemical industry can benefit from underground coal gasification, in: Proceedings of the 5th Underground Coal Conversion Symposium, Alexandria, Virginia (June 18–21, 1979), pp. 177–190.Google Scholar
  60. McCray, R. L., McClintok, N., and Bloom, R., Jr., 1979, The ICGG Approach—What is it?, in: Coal Processing Technology, Volume V, A CEP Technical Manual (AIChE Publication), New York, New York, pp. 156–165.Google Scholar
  61. McElmung, B., and Smilser, S., 1978, Economics of Texaco gasification—Combined cycle systems, Fluor Engineers and Constructors, Inc., EPRI AF-753 (April 1978).Google Scholar
  62. McKetta, J. J. (ed.), Encyclopedia of Chemical Processing & Design, Vol. 6, Marcel Dekker, New York, New York.Google Scholar
  63. Meisel, S. L., McCullough, J. P., Lechthaler, C. H., and Weisz, P. B., 1976, Gasoline from methanol in one step, Chem. Tech. 6:86–89.Google Scholar
  64. Mink, N. H., Steedman, W. G., and Tewksbury, T. L., 1979, Utility gas from an agglomerating burner gasifier, in: Coal Processing Technology, Vol. V, A CEP Technical Manual (AIChE Publication), New York, New York, pp. 31–43.Google Scholar
  65. Mitra, A. K., and Roy, A. N., 1963, Performance of slurry reactor for Fischer-Tropsch and related syntheses, Indian Chem. Eng. 5:127–132.Google Scholar
  66. Morgan, C. R., Warner, J. P., and Yurchak, S., 1981, Gasoline from alcohols, I&EC Prod. Res.Dev. 20:185–190.CrossRefGoogle Scholar
  67. Morita, A., Takahashi, H., and Koseki, T., 1971, Methanol production by Japan Gas Chemical Company process, Chem. Econ. Eng. Rev. 3(9):23–28.Google Scholar
  68. Ouwerkerk, C., 1978, Design for selective H2S absorption, Hydrocarbon Process. 57(4):89–94.Google Scholar
  69. Parrish, R. W., 1970, Method for Production of Methanol, U.S. Patent 3,501,516 (March 17, 1970), J. F. Prichard and Company.Google Scholar
  70. Patel, J. G., and Leppin, D., 1979, The U-Gas process for ammonia manufacture, in: Symposium, Ammonia from Coat, Tennessee Valley Authority (May 8–10, 1979), pp. 63–71.Google Scholar
  71. Pay, T. D., 1980, Foreign coal liquefaction technology survey and assessment, SASOL—The commercial experience, Gilbert Associates, Inc., ORNL/Sub-79/13837/4.Google Scholar
  72. Pettman, M. J., and Humphreys, G. C., 1975, Improved designs to save energy, Hydrocarbon Process.54(1):77–81.Google Scholar
  73. Pichler, von H., 1949, Ueber die Entwicklung der Benzinsynthese in USA, Bren. Chem. 30:105–109.Google Scholar
  74. Pichler, von H., and Schulz, H., 1970, Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO and H2, Chem.-Ing.-Tech. 42:1162–1174.CrossRefGoogle Scholar
  75. Probstein, R. F., and Hicks, R. E., 1982, Synthetic Fuels, McGraw-Hill Book Co., New York, New York.Google Scholar
  76. Ralph M. Parsons Co., 1977, Fischer-Tropsch complex, conceptual design/economic analysis,Google Scholar
  77. Ralph M. Parsons Co., FE-1775–7 (January 1977).Google Scholar
  78. Risenfeld, F. C., and Kohl, A. L., 1974, Gas Purification, 2nd Ed., Gulf Publishing Co., Houston, Texas.Google Scholar
  79. Roginsky, S. Z., 1965, Molecular mechanism of some catalytical reactions as revealed by means of isotopic kinetical effects and experiments with tracer molecules, in: Proceedings of the ThirdInternational Congress on Catalysis (Sachtler, W. M. H., Schuit, G. C. A., and Zwietering, P., ed.), Amsterdam, Netherlands (July 20–25, 1964), pp. 939–956.Google Scholar
  80. Rudolph, P. E. H., 1972, The Lurgi process—The route to SNG from coal, Paper presented at the Fourth Synthetic Pipeline Gas Symposium, Chicago, Illinois (October 1972).Google Scholar
  81. Sakai, T., and Kunugi, T., 1974, Liquid phase (slurry) method for Fischer-Tropsch synthesis, SekiyuCokkai Shi. 17:853–858.Google Scholar
  82. Salvador, L. A., Rath, L. K., Carrera, J. P., and Vidt, E. J., 1980, The Westinghouse coal gasification process, Paper presented at the International Gas Research Conference (June 1980).Google Scholar
  83. Schlesinger, M. D., Benson, H. E., Murphy, E. M., and Storch, H. H., 1954, Chemicals from the Fischer-Tropsch synthesis, Ind. Eng. Chem. 46:1322–1326.CrossRefGoogle Scholar
  84. Schreiner, M., 1978, Research guidance studies to assess gasoline from coal by methanol-to-gasoline and SASOL-type Fischer-Tropsch technologies, Mobil Res. & Dev. Corp., DOE Report FE-2447–13 (August 1978).CrossRefGoogle Scholar
  85. Sherwin, M., and Blum, D., 1979, Liquid-phase methanol, Chem Systems Inc., EPRI AF-1291 (December 1979).Google Scholar
  86. Shinnar, R., and Kuo, J. C. W., 1978, Gasifier study for Mobil coal to gasoline processes, Mobil Res. & Dev. Corp., DOE Report FE-2766–13 (October 1978).Google Scholar
  87. Shultz, J. F., Abelson, M., Shaw, L., and Anderson, R. B., 1957, Fischer-Tropsch synthesis, Ind.Eng. Chem. 49:2055–2060.CrossRefGoogle Scholar
  88. Stephens, D. R., 1979, The private sector involvement in underground coal gasification, in: Proceedings of the 5th Underground Coal Conversion Symposium, Alexandria, Virginia (June 18–21, 1979), pp. 25–30.Google Scholar
  89. Storch, H. H., Golumbic, N., and Anderson, R. B., 1951, The Fischer-Tropsch and RelatedSynthesis, John Wiley & Sons, New York, New York.Google Scholar
  90. Supp, E., 1973, Technology of Lurgi’s low pressure methanol process, Chem. Tech. July:430–435 (1973).Google Scholar
  91. Tani, M., and Fukawa, T., 1971, Nissui-Topsoe intermediate-pressure methanol synthesis process using new catalyst, Chem. Econ. Eng. Rev. 3(9):17–22.Google Scholar
  92. Tram, H., 1952, Technische und Wirtschaftliche Moeglichkeiten der Kohlenoxyd-Hydrierung, Chem.-Ing.-Tech. 24:237–247.CrossRefGoogle Scholar
  93. Uhde GmbH, 1981, Rheinbraun HTW-process, Uhde GmbH Information Brochure No. Ro-I-5–19-2000–81.Google Scholar
  94. Union Carbide, 1978, Process for producing ethanol from synthesis gas, British Patent 1,501,891 (February 22, 1978).Google Scholar
  95. van der Burgt, M. J., 1979, Clean syngas from coal, Hydrocarbon Process. 58(1):161–164.Google Scholar
  96. Voltz, S. E., and Wise, J. J., 1976, Development studies on conversion of methanol and related oxygenates to gasoline, Mobil Res. & Dev. Corp. ERDA FE-1773–25 (November 1976).Google Scholar
  97. Voorhies, A., Jr., Owen, J. J., and Johnson, J. F., 1958, The Oxo process, in: Advances in PetroleumChemistry and Refining, (Kobe, K. A., and McKetta, J. J., Jr., ed.), Vol. 1, Interscience Publishers, Inc., New York, New York, pp. 486–524.Google Scholar
  98. Waitzman, D. A., Faucett, H. L., Nichols, D. E., Tomlinson, S. V., and Broadfoot, W. J., 1977, Evaluation of intermediate-BTU coal gasification systems for retrofitting power plants, TennesseeGoogle Scholar
  99. Valley Authority, EPRI AF-531 (August 1977).Google Scholar
  100. Weir, A., Jr., and Engel, P. K., 1980, The Cool Water coal gasification program, in: Coal ProcessingTechnology, Vol. VI, A CEP Technical Manual (AIChE Publication), New York, New York, pp. 52–56.Google Scholar
  101. Wen, C. Y., and Tone, S., 1978, Coal conversion reaction engineering, review presented at the ISCRE Symposium, Houston, Texas (1978).Google Scholar
  102. Wigg, E. E., and Lunt, R. S., 1974, Methanol as a gasoline extender—Fuel economy, emissions, and high temperature driveability, Paper 741008, Automobile Engineering Meeting, SAE, Toronto, Canada (October 1974).CrossRefGoogle Scholar
  103. Wilson, M. W., and Plants, K. D., 1968, Shift conversion of synthesis gas containing sulfur, dust, and carbon dioxide, IE&C Proc. Des. Dev. 7:526–529.CrossRefGoogle Scholar
  104. Yoon, H., Wei, J., and Denn, M. M., 1977, Modeling and analysis of moving bed gasifiers, Univ. of Delaware, EPRI AF-590, Vol. 1 and 2 (November 1977).Google Scholar
  105. Ziesecke, von K.-H., 1952, Umwandlung von Alkoholen in die naechsthoeheren Homologen mit Kohlenoxyd und Wasserstoff, Bren. Chem. 33:385–397.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • James C. W. Kuo
    • 1
  1. 1.Mobil Research and Development CorporationPaulsboroUSA

Personalised recommendations