Physiology pp 221-236 | Cite as


  • Laurence A. Sherman
  • John E. Kaplan


For discussion of the interaction of the RES and hemostatic system, a brief review of the latter is desirable (Murano, 1980; Hougie and Baugh, 1980). Body hemostasis is maintained by three major elements: vascular contraction, platelet aggregation, and a complex plasma protein coagulation mechanism. These interact in the following way. When a vessel is severed or injured, temporary cessation or slowing of blood loss occurs via vasoconstriction. Then platelets adhere to exposed subendothelium and aggregate to each other. Stimuli for aggregation include collagen and small amounts of thrombin. A temporary plug of platelets is formed. The plasma coagulation system is concomitantly activated, but proceeds at a slower rate. This system is initiated by Factor XII activation, probably usually by collagen in the subendothelium. A complex interaction exists between XII, high-molecular-weight kininogen, and prekallikrein. This results in further activation of the coagulation system, fibrinolytic system, and formation of bradykinin. The coagulation enzyme system cascade continues by activation of Factor XI which in turn activates Factor IX. Factor IXa forms a complex with Factor VIII, Ca2+, and phospholipid to activate Factor X. The phospholipid is furnished by platelets. Xa, in turn, complexes with V, Ca2+, and phospholipid to convert Factor II (prothrombin) to thrombin. Thrombin cleaves two small pairs of polypeptides from fibrinogen. The remaining molecule is fibrin monomer, which is then capable of spontaneously polymerizing via noncovalent linkage. Fibrin polymers are relatively insoluble and at some point in polymerization they come out of solution as a gel (clot). The gel is made up of fibrin strands which trap erythrocytes and serve to link the aggregated platelets in a more permanent seal.


Tissue Factor Coagulation System Procoagulant Activity Fibrin Degradation Product Hemostatic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren, T., Berghen, L., Lagergren, H., Lahnborg, G., and Shildt, P., 1976, Phagocytic and catabolic function of the reticuloendothelial system in dogs subjected to defibrinogenation, Thrombosis Research 8:819.PubMedCrossRefGoogle Scholar
  2. Alitalo, K., Hovi, T., and Vaheri, A., 1980, Fibronectin is produced by human macrophages, J. Exp. Med. 151:602.PubMedCrossRefGoogle Scholar
  3. Arakawa, T., and Spaet, T. H., 1963, In vitro inactivation of rabbit blood thromboplastin by macrophages, Proc. Soc. Exp. Biol. Med. 113:71.PubMedGoogle Scholar
  4. Banda, M. J., and Werb, Z., 1980, The role of macrophage elastase in the proteolysis of fibrinogen, plasminogen and fibronectin, Fed. Proc. 39:1756.Google Scholar
  5. Bang, N. V., Hansen, M. S., Smith, G. F., and Mosesson, M. W., 1973, Properties of soluble fibrin polymers encountered in thrombotic states, Thromb. Diath. Haemorrh. Suppl. 56:75.PubMedGoogle Scholar
  6. Barnhart, M. I., and Cress, D. C., 1967, Plasma clearance of products of fibrinolysis, Adv. Exp. Med. Biol. 1:492.CrossRefGoogle Scholar
  7. Blumenstock, F. A., Weber, P. B., Saba, T. M., and Laffin, R., 1977, Electroimmunoassay of alphasglobulin opsonic protein levels in the evaluation of reticuloendothelial function, Am. J. Physiol. 232:R80.PubMedGoogle Scholar
  8. Busch, D., and Saldeen, T., 1973, Amount of fibrin in different organs after intravenous, intraportal or intra-aortal injection of thrombin in the rat, Thromb. Diath. Haemorrh. 29:87.PubMedGoogle Scholar
  9. Chang, M. L., Bang, N. U., Truex, L., Boxer, L., Mattier, L. E., and Marks, L. A., 1977, Degration of soluble fibrin complexes, fibrinogen and fibrin by macrophage enzymes, Thromb. Haemostasis 38:102.Google Scholar
  10. Colvin, R. B., and Dvorak, G. F., 1975, Fibrinogen/fibrin on the surface of macrophages: Detection, distribution, binding requirements, and possible role in macrophage adherence phenomena, J. Exp. Med. 142:1377.PubMedCrossRefGoogle Scholar
  11. Colvin, R. B., Gardner, P. I., Roblin, R. O., Verderber, E. L., Lanigan, J. M., and Mosesson, M. W., 1979, Cell surface fibrinogen-fibrin receptors on cultured human fibroblasts: Association with fibronectin (cold-insoluble globulin, LETS protein) and loss in SV40 transformed cells, Lab. Invest. 41:464.PubMedGoogle Scholar
  12. Debanne, M. T., Regoeczi, E., and Dolovich, J., 1973, Serum protease inhibitors in the blood clearance of subtilisin A, Br. J. Exp. Pathol. 54:571.PubMedGoogle Scholar
  13. Debanne, M. T., Bell, R., and Dolovich, J., 1975, Uptake of proteinase-α-macroglobulin complexes by macrophages, Biochim. Biophys. Acta 411:295.PubMedCrossRefGoogle Scholar
  14. Deykin, D., 1966, The role of the liver in serum-induced hypercoagulability, J. Clin. Invest. 45:256.PubMedCrossRefGoogle Scholar
  15. Deykin, D., Cochios, F., DeCamp, G., and Lopez, A., 1968, Hepatic removal of activated Factor X by the perfused rabbit liver, Am. J. Physiol. 214:414.PubMedGoogle Scholar
  16. Drapier, J. C., Tenu, J. P., Lemaire, G., and Petit, J. F., 1979, Regulation of plasminogen activator secretion in mouse peritoneal macrophages. I. Role of serum studied by a new spectrophoto-metric assay for plasminogen activators, Biochimie 61:463.PubMedCrossRefGoogle Scholar
  17. Edwards, R. L., and Rickles, F. R., 1978, On the origin of leukocyte procoagulant activity, Thromb. Res. 13:307.PubMedCrossRefGoogle Scholar
  18. Edwards, R. L., and Rickles, F. R., 1980, The role of human T cells (and T cell products) for monocyte tissue factor generation, J. Immunol. 125:606.PubMedGoogle Scholar
  19. Ehrlich, M. I., Krushell, J. S., Blumenstock, F. A., and Kaplan, J. E., 1981, Depression of phagocytosis by plasmin degradation products of plasma fibronectin, J. Lab. Clin. Med. 98:263.PubMedGoogle Scholar
  20. Emeis, J. J., and Lindeman, J., 1976, Rat liver macrophages will not phagocytize fibrin during disseminated intravascular coagulation, Haemostasis 5:193.PubMedGoogle Scholar
  21. Esnouf, M. P., and Marshall, R., 1968, The effect of blockade of the reticuloendothelial system and of hypotension on the response of dogs to Ancistrodon rhodostoma venom, Clin. Sci. 35:261.PubMedGoogle Scholar
  22. Filkins, J. P., 1971, Comparison of endotoxin detoxification by leukocytes and macrophages, Proc. Soe. Exp. Biol. Med. 137:1396.Google Scholar
  23. Gans, H., 1966, Preservation of vascular patency as a function of reticuloendothelial clearance, Surgery 60:1216.PubMedGoogle Scholar
  24. Gans, H., and Lowman, J., 1967, Uptake of fibrin and fibrin degradation products by the isolated perfused rat liver, Blood 29:526.PubMedGoogle Scholar
  25. Gans, H., McLeod, J., and Lowman, J. T., 1967, A new technique for the preparation of an in vivo labelled fibrinogen, Blood 29:517.PubMedGoogle Scholar
  26. Good, R. A., and Thomas, L., 1952, Studies on the generalized Schwartzman reaction. II. The production of bilateral cortical necrosis of the kidneys by a single injection of bacterial toxin in rabbits previously treated with thorotrast or trypan blue, J. Exp. Med. 96:625.PubMedCrossRefGoogle Scholar
  27. Gordon, S., 1978, Regulation of enzyme secretion by mononuclear phagocytes: Studies with macrophage plasminogen activator and lysozyme, Fed. Proc. 37:2754.PubMedGoogle Scholar
  28. Gordon, S., Unkeless, J., and Cohn, Z. A., 1974, Induction of macrophage plasminogen activator by endotoxin stimulation and phagocytosis: Evidence for a two stage process, J. Exp. Med. 140:995.PubMedCrossRefGoogle Scholar
  29. Gralnick, H. R., and Abrell, E., 1973, Studies of the procoagulant and fibrinolytic activity of promyelocytes in actue promyelocytic leukemia, Br. J. Haematol. 24:89.PubMedCrossRefGoogle Scholar
  30. Gupta, P. K., Frost, J. K., Geddes, S., Aracil, B., and Davidovski, F., 1979, Morphological identification of alpha-2-antitrypsin in pulmonary macrophages, Hum. Pathol. 1:345.CrossRefGoogle Scholar
  31. Haakenstad, A. O., and Mannik, M., 1974, Saturation of the reticuloendothelial system with soluble immune complexes, Immunology 112:1939.Google Scholar
  32. Halpern, B. N., Benacerraf, B., and Biozzi, G., 1953, Quantitative study of the granulopectic activity of the reticuloendothelial system. I. The effect of the ingredients present in India ink and of substances affecting blood clotting in vivo on the fate of carbon particles administered intravenously in rats, mice and rabbits, Br. J. Exp. Pathol. 34:426.PubMedGoogle Scholar
  33. Hormann, H., and Scidl, M., 1980, Affinity chromatography on immobilized fibrin monomer. III. The fibrin affinity center of fibronectin, Hoppe-Seyler’s Z. Physiol. Chem. 361S:1449.Google Scholar
  34. Hougie, C., and Baugh, R. F., 1980, Current views on blood coagulation and haemostatic mechanism, in: Blood Coagulation and Haemostasis (J. M. Thomson, ed.), p. 1, Churchill Livingstone, Edinburgh.Google Scholar
  35. Hovi, T., Mosher, P., and Vaheri, A., 1977, Cultured human monocytes synthesize and secrete α2 macroglobulin, J. Exp. Med. 145:1580.PubMedCrossRefGoogle Scholar
  36. Isaacson, P., Wright, D. H., Judd, M. A., and Mepham, B. L., 1979, Primary gastrointestinal lymphoma, Cancer 43:1805.PubMedCrossRefGoogle Scholar
  37. Jay, S., Bang, N., Stropes, L., Marks, C., and Campbell, S., 1980, Plasma fibronectin concentration in acute and chronic lung disease, Clin. Res. 28:744A.Google Scholar
  38. Jilek, F., and Hormann, H., 1978, Fibronectin (cold-insoluble globulin). V. Mediator of fibrin-monomer binding to macrophages, Hoppe-Seyler’s Z. Physiol. Chem. 359:1603.PubMedGoogle Scholar
  39. Johansson, S., Rubin, K., Hook, M., Ahlgren, T., and Seljelid, R., 1979, In vitro biosynthesis of coldinsoluble globulin (fibronectin) by mouse peritoneal macrophages, FEBS Lett. 105:313.PubMedCrossRefGoogle Scholar
  40. Kaplan, J., 1980, Evidence for reutilization of surface receptors for α-macroglobulin-protease complexes in rabbit alveolar macrophages, Cell 19:197.PubMedCrossRefGoogle Scholar
  41. Kaplan, J. E., 1981, The role of the reticuloendothelial system in control of hemostatic and thrombotic mechanisms, in: Physiology of the Reticuloendothelial System (T. M. Saba and B. M. Altura, eds.), Raven Press, New York.Google Scholar
  42. Kaplan, J., and Nielsen, M. L., 1979a, Analysis of macrophage surface receptors. I. Binding of α-macroglublin-protease complexes to rabbit alveolar macrophages, J. Biol. Chem. 254:7323.PubMedGoogle Scholar
  43. Kaplan, J., and Nielsen, M. L., 1979b, Analysis of macrophage surface receptors. II. Internalization of α-macroglobulin-trypsin complexes by rabbit alveolar macrophages, J. Biol. Chem. 254:7329.PubMedGoogle Scholar
  44. Kaplan, J. E., and Saba, T. M., 1976, Humoral deficiency and reticuloendothelial depression after traumatic shock, Am. J. Physiol. 230:7.PubMedGoogle Scholar
  45. Kaplan, J. E., and Saba, T. M., 1978, Platelet removal from the circulation by the liver and spleen, Am. J. Physiol. 235:H314.PubMedGoogle Scholar
  46. Kaplan, J. E., and Snedeker, P. W., 1980, Maintenance of fibrin solubility by plasma fibronectin, J. Lab. Clin. Med. 96:1054.PubMedGoogle Scholar
  47. Kaplan, J. E., Saba, T. M., and Cho, E., 1976, Serological modification of reticuloendothelial capacity and altered resistance to traumatic shock, Circ. Shock 3:203.Google Scholar
  48. Kaplan, J. E., Blumenstock, F. A., and Saba, T. M., 1979, A radial immunodiffusion method for the measurement of rat fibrinogen and fibrin degradation products, Vox Sang. 36:65.PubMedCrossRefGoogle Scholar
  49. Kernoff, L. M., Colman, J., and Rawlings, E., 1981, Acute phase stimulation of fibrinogen synthesis: Evidence against a major mediator role for granulocytes, Thromb. Haemostasis 46:238.Google Scholar
  50. Kopec, M., Bykowska, K., Lopaciuk, S., Jelenska, M., Kaczanowska, J., Sopata, I., and Wojtecka, E., 1980, Effects of neutral proteases from human leukocytes on structure and biological properties of human Factor VIII, Thromb. Haemostasis 43:211.Google Scholar
  51. Lanser, M. E., Saba, T. M., and Scovill, W. A., 1980, Opsonic glycoprotein (plasma fibronectin) levels after burn, Ann. Surg. 192:776.PubMedCrossRefGoogle Scholar
  52. Lazar, B., Biliczki, F., and Kavaes, K., 1968, The phagocytic function of the reticuloendothelial system in rats treated with polybrene, liquoid and compound 48/80, Pharmacology 1:253.PubMedCrossRefGoogle Scholar
  53. Lee, L., 1962, Reticuloendothelial clearance of circulating fibrin in the pathogenesis of the generalized Schwartzmann reaction, J. Exp. Med. 115:1065.PubMedCrossRefGoogle Scholar
  54. Lee, L., and McCluskey, R. J., 1962, Immunohistochemical demonstration of the reticuloendothelial clearance of circulating fibrin aggregates, J. Exp. Med. 116:611.PubMedCrossRefGoogle Scholar
  55. Lee, L., Prose, P. H., and Cohen, M. H., 1966, Role of reticuloendothelial system in diffuse lowgrade intravascular coagulation, Thromb. Diath. Haemorrh. Suppl. 87:66.Google Scholar
  56. Maier, R. V., and Ulevitch, R. V., 1981, Bacterial lipopolysaccharide (LPS) induces a unique procoagulant activity (PCA) in explanted rabbit hepatic macrophages, Circ. Shock 8:216.Google Scholar
  57. Matsuda, M., Yoshida, N., Cliki, N., and Wakalayachis, C., 1978, Distribution of cold-insoluble globulin in plasma and tissues, Ann. N.Y. Acad. Sci. 312:74.PubMedCrossRefGoogle Scholar
  58. Morrison, P. R., Edsall, J. T., and Miller, S. G., 1948, Preparation and properties of serum and plasma proteins. XCIII. The separation of purified fibrinogen from fraction I of human plasma, J. Am. Chem. Soc. 70:3103.PubMedCrossRefGoogle Scholar
  59. Mosesson, M. W., 1978, Structure of human plasma cold-insoluble globulin and the mechanism of its precipitation in the cold with heparin or fibrin-fibrinogen complexes, Ann. N.Y. Acad. Sci. 312:11.CrossRefGoogle Scholar
  60. Mosesson, M. W., and Amrani, D. L., 1980, The structure and biological activities of plasma fibronectin, Blood 56:145.PubMedGoogle Scholar
  61. Mosesson, M. W., and Umfleet, R. A., 1970, The cold-insoluble globulin of human plasma. I. Purification, primary characterization and relationship to fibrinogen and other cold-insoluble fraction components, J. Biol. Chem. 245:5728.PubMedGoogle Scholar
  62. Mosher, D. F., 1975, Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor, J. Biol. Chem. 250:6614.PubMedGoogle Scholar
  63. Mosher, D. F., 1976, Changes in plasma cold-insoluble globulin concentration during experimental Rocky Mountain spotted fever infection in rhesus monkeys, Thromb. Res. 9:37.PubMedCrossRefGoogle Scholar
  64. Mosher, D. F., 1980, Fibronectin, Prog. Haemostasis Thromb. 5:111.Google Scholar
  65. Mosher, D. F., and Williams, E., 1978, Fibronectin concentration is decreased in plasma of severely ill patients with disseminated intravascular coagulation, J. Lab. Clin. Med. 91:729.PubMedGoogle Scholar
  66. Mosher, D. F., Schad, P. E., and Vann, J. M., 1980, Cross-linking of collagen and fibronectin by Factor XIIIa: Localization of participating glutaminyl residues to a tryptic fragment of fibronectin, J. Biol. Chem. 255:1181.PubMedGoogle Scholar
  67. Muhlfelder, T. W., Khan, I., and Niemetz, J., 1978, Factors influencing the release of procoagulanttissue factor activity from leukocytes, J. Lab. Clin. Med. 92:65.PubMedGoogle Scholar
  68. Muhlfelder, T. W., Niemetz, J., Kreutzer, D., Beebe, D., Ward, P. A., and Rosenfeld, S. I., 1979, C5 chemotactic fragment induces leukocyte production of tissue factor activity, J. Clin. Invest. 63:147.PubMedCrossRefGoogle Scholar
  69. Murano, G., 1980, A basic outline of blood coagulation, in: Seminars in Thrombosis and Hemostasis (E. F. Mammen, ed.), Vol. VI, p. 140.Google Scholar
  70. Newman, W., Gordon, S., Hammerling, U., Senik, A., and Bloom, B. R., 1978, Producer of migration inhibition factor (MIF) and an inducer of plasminogen activator (IPA) by subsets of T cells in MLC., J. Immunol. 120:927.PubMedGoogle Scholar
  71. Niemetz, J., and Marcus, A. J., 1974, The stimulatory effect of platelets and platelet membranes on the procoagulant activity of leukocytes, J. Clin. Invest. 54:1437.PubMedCrossRefGoogle Scholar
  72. Niemetz, J., and Morrison, D. C., 1977, Lipid A as the biologically active moiety in bacterial endotoxin (LPS)-initiated generation of procoagulant activity by peripheral blood leukocytes, Blood 49:947.PubMedGoogle Scholar
  73. Ogston, D., and Bennett, B., 1977, Naturally occurring inhibitors of coagulation, in: Haemostasis: Biochemistry, Physiology and Pathology (D. Ogston and B. Bennett, eds.), Wiley, New York.Google Scholar
  74. Ohlsson, K., 1971, Elimination of 125I trypsin α-macroglobulin complexes from blood by reticuloendothelial cells in dog, Acta Physiol. Scand. 81:269.PubMedCrossRefGoogle Scholar
  75. Osterud, B., Lindahl, U., Bogwald, J., and Selegelid, R., 1981, The extravascular coagulation system: The production of prothrombin, Factors V, X, IV, VII and tissue factor in macrophages, Thromb. Haemostasis 46:14.Google Scholar
  76. Plow, E. F., and Edgington, T. S., 1975, An alternative pathway for fibrinolysis. I. The cleavage of fibrinogen by leukocyte proteases at physiologic pH, J. Clin. Invest. 56:30.PubMedCrossRefGoogle Scholar
  77. Prose, P. H., Lee, L., and Balk, S. D., 1965, Electron microscopic study of the phagocytic fibrinclearing mechanism, Am. J. Pathol. 47:403.PubMedGoogle Scholar
  78. Rabiner, S. F., and Friedman, L. H., 1968, The role of intravascular hemolysis and the reticuloendothelial system in the production of a hypercoagulable state, Br. J. Haematol. 14:105.PubMedCrossRefGoogle Scholar
  79. Richardson, D. L., Pepper, S. D., and Kay, A. B., 1976, Chemotaxis for human monocytes by fibrinogen-derived peptides, Br. J. Haematol. 32:507.PubMedCrossRefGoogle Scholar
  80. Rickles, F. R., Hardin, J. A., Pitlick, F. A., Hoyer, L. W., and Conrad, M. E., 1973, Tissue factor activity in lymphocyte cultures from normal individuals and patients with hemophilia A, J. Clin. Invest. 52:1427.PubMedCrossRefGoogle Scholar
  81. Rickles, F. R., Levin, J., Rosenthal, I., and Atkins, A., 1979, Functional interaction of concanavalin A and bacterial endotoxin (lipopolysaccharide): Effects on the measurement of endogenous pyrogen release, human mononuclear cell tissue factor activation, lymphocyte DNA synthesis, and gelatin of limulus amebocyte lysate, J. Lab. Clin. Med. 93:128.PubMedGoogle Scholar
  82. Rodriguez-Erdmann, F., 1964, Studies on the pathogenesis of the generalized Schwartzman reaction. III. Trigger mechanism for the activation of the prothrombin molecule, Thromb. Diath. Haemorrh. 12:471.Google Scholar
  83. Rogers, D. E., 1960, Host mechanisms which act to remove bacteria from the blood stream, Bacteriol. Rev. 24:50.PubMedGoogle Scholar
  84. Rothberger, H., Zimmerman, T. S., Spiegelberg, H. L., and Vaughan, J. H., 1977, Leukocyte procoagulant activity: Enhancement of production in vitro by IgG and antigen-antibody complexes, J. Clin. Invest. 59:549.PubMedCrossRefGoogle Scholar
  85. Saba, T. M., and DiLuzio, N. R., 1969, Reticuloendothelial blockade and recovery as a function of opsonic activity, Am. J. Physiol. 216:197.PubMedGoogle Scholar
  86. Saba, T. M., and Jaffe, E., 1980, Plasma fibronectin (opsonic glycoprotein): Its synthesis by vascular endothelial cells and role in cardiopulmonary integrity as related to reticuloendothelial function, Am. J. Med. 68:577.PubMedCrossRefGoogle Scholar
  87. Saba, T. M., Blumenstock, F. A., Weber, P., and Kaplan, J. E., 1978, Physiologic role of coldinsoluble globulin in systemic host defense: Implications of its characterization of the opsonic α2-surface binding glycoprotein, Ann. N.Y. Acad. Sci. 312:43.PubMedCrossRefGoogle Scholar
  88. Sandberg, A. L., Siraganian, R. P., and Mergenhagen, S. E., 1975, Biological consequences of endotoxin interaction with complement, in: Gram-negative Bacterial Infections and Mode of Endotoxin Actions—Pathophysiological, Immunological and Clinical Aspects (B. Urbaschek, R. Urbaschek, and E. Neter, eds.), pp. 329–334, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  89. Schneidkraut, M. J., and Loegering, D. J., 1978, Effect of hemolyzed blood on reticuloendothelial function and susceptibility to hemorrhagic shock, Proc. Soc. Exp. Biol. Med. 159:418.PubMedGoogle Scholar
  90. Schumacker, P. T., and Saba, T. M., 1977, Augmentation of pulmonary insufficiency during lowgrade intravascular coagulation by prior impairment of hepatic RE clearance activity, Physiologist 20:85.Google Scholar
  91. Scovill, W. A., Saba, T. M., Kaplan, J. E., Bernard, H. R., and Powers, S. R., Jr., 1976, Deficits in reticuloendothelial humoral mechanisms after trauma, J. Trauma 16:898.PubMedCrossRefGoogle Scholar
  92. Scovill, W. A., Saba, T. M., Kaplan, J. E., Bernard, H. R., and Powers, S. R., Jr., 1977, Disturbances in circulating opsonic activity in man after operative and blunt trauma, J. Surg. Res. 22:709.PubMedCrossRefGoogle Scholar
  93. Sekiguchi, K., and Hakomori, S., 1980, Identification of two fibrin-binding domains in plasma fibronectin and unequal distribution of these domains in two different subunits: A preliminary note, Biochem. Biophys. Res. Commun. 97:709.PubMedCrossRefGoogle Scholar
  94. Sherman, L. A., and Lee, J., 1977, Specific binding of soluble fibrin to macrophages, J. Exp. Med. 145:76.PubMedCrossRefGoogle Scholar
  95. Sherman, L. A., Harwig, S., and Lee, J., 1975, In vitro formation and in vivo clearance of fibrinogenfibrin complexes, J. Lab. Clin. Med. 86:100.PubMedGoogle Scholar
  96. Sherman, L. A., Lee, J., and Jacobson, A., 1977, Quantitation of the reticuloendothelial system clearance of soluble fibrin, Br. J. Haematol. 37:231.PubMedCrossRefGoogle Scholar
  97. Sherman, L. A., Lee, J. L., and Stewart, C. C., 1981, Release of fibrinolytic enzymes by macrophages in response to soluble fibrin, J. Reticuloendothelial Soc. 30(5):317–329.Google Scholar
  98. Snedeker, P. W., and Kaplan, J. E., 1980, Reticuloendothelial clearance and vascular localization of soluble fibrin monomer, Circ. Shock 7:207.Google Scholar
  99. Snedeker, P. W., and Kaplan, J. E., 1980, Reticuloendothelial clearance and vascular localization of soluble fibrin monomers, Arc. Shock. 7:207.Google Scholar
  100. Snedeker, P. W., Kaplan, J. E., and Saba, T. M., 1978, Effect of traumatic shock and alteration of reticuloendothelial function on the vascular clearance of soluble fibrin, Physiologist 21:113.Google Scholar
  101. Spaet, T. H., Horowitz, H. T., Zucker-Franklin, D., Clintron, J., and Biezenski, J. J., 1961, Reticuloendothelial clearance of blood thromboplastin by rats, Blood 17:196.Google Scholar
  102. Stathakis, N. E., and Mosesson, M. W., 1977, Interactions among heparin, cold-insoluble globulin and fibrinogen in the formation of the heparin precipitable fraction of plasma, J. Clin. Invest. 60:855.PubMedCrossRefGoogle Scholar
  103. Stathakis, N. E., Mosesson, M. W., Chen, A. B., and Galankis, D. K., 1978, Cryoprecipitate of fibrinfibrinogen complexes induced by cold-insoluble globulin of plasma, Blood 51:1211.PubMedGoogle Scholar
  104. Unkeless, J., Gordon, S., and Reich, E., 1974, Secretion of plasminogen activator by stimulated macrophages, J. Exp. Med. 139:834.PubMedCrossRefGoogle Scholar
  105. van Ginkel, C. J. W., van Aken, W. G., Oh, J. I. H., and Vrecken, J., 1977, Stimulation of monocyte procoagulant activity by adherence to different surfaces, Br. J. Haematol. 37:35.PubMedGoogle Scholar
  106. Walsh, P. N., 1981, Platelets and coagulation proteins, Fed. Proc. 40:2086.PubMedGoogle Scholar
  107. Weidner, N., Itteryah, T. R., Wochner, R. D., and Sherman, L. A., 1979, Investigation of an inflammatory humoral factor as a stimulator of fibrinogen synthesis, Thromb. Res. 15:651.PubMedCrossRefGoogle Scholar
  108. Werb, Z., and Gordon, S., 1975a, Secretion of a specific coUagenase by stimulated macrophages, J. Exp. Med. 142:346.PubMedCrossRefGoogle Scholar
  109. Werb, Z., and Gordon, S., 1975b, Elastase secretion by stimulated macrophages: Characterization and regulation, J. Exp. Med. 142:361.PubMedCrossRefGoogle Scholar
  110. Werb, Z., Foley, R., and Munck, A., 1978, Glucocorticoid receptors and glucocorticoid-sensitive secretion of neutral proteases in a macrophage line, J. Immunol. 121:115.PubMedGoogle Scholar
  111. Yamada, K., and Olden, K., 1978, Fibronectins—Adhesive glycoproteins of cell surface and blood, Blood 6:195.Google Scholar
  112. Zubairov, D. M., Andrushko, I. A., and Davydov, V. S., 1970, Hemocoagulatory properties of Kupffer cells, Bull. Exp. Biol. Med. 70:1370.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Laurence A. Sherman
    • 1
  • John E. Kaplan
    • 2
  1. 1.Missouri/Illinois Regional Red Cross Blood ServicesSt. LouisUSA
  2. 2.Department of PhysiologyAlbany Medical College of Union UniversityAlbanyUSA

Personalised recommendations