Physiology pp 57-71 | Cite as

Quantitation of Macrophage Phagocytosis in Vitro

  • Paul W. Gudewicz


Phagocytosis is the cellular process that regulates the uptake of exogenous particulate material by eukaryotic cells. As a result of nearly 100 years of intensive research, initiating with the classic works of Metchnikoff, the importance of phagocytosis with regard to homeostasis, defense mechanisms against invading infectious agents and particulate matter, bulk transport of macromolecules, and cellular nutrition is now apparent. In their attempts to uncover the mechanisms regulating phagocytic activity, biologists have developed and utilized a number of techniques and particles to measure this process. In recent years, it has become increasingly apparent that most investigators interested in unraveling the mechanisms as well as the intracellular elements involved in the ingestion process have favored an in vitro approach to the study of phagocytosis. Although the ability to phagocytize particulate matter is a functional property exhibited by most cells to some degree, by far the most active cell types, and those most studied in terms of their phagocytic activity, are the “professional” phagocytes of the blood and tissues, namely, the polymorphonuclear leukocyte (PMNL) and the mononuclear phagocyte or macrophage.


Alveolar Macrophage Phagocytic Cell Latex Bead Particle Uptake Macrophage Phagocytosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, C., Saba, T. M., and Molnar, J., 1973, Isolation, purification and characterization of opsonic protein, J. Reticuloendothelial Soc. 13:410.Google Scholar
  2. Baughn, R. E., and Bonventre, P. F., 1975, Phagocytosis and intracellular killing of Staphylococcus aureus by normal mouse peritoneal macrophages, Infect. Immun. 12:346.PubMedGoogle Scholar
  3. Blake, M., and Swanson, J., 1975, Studies on gonococcus infection. IX. In vitro decreased association of pilated gonococci with mouse peritoneal macrophages, Infect. Immun. 11:1402.PubMedGoogle Scholar
  4. Blumenstock, F. A., Saba, T. M., Weber, P., and Laffin, R., 1978, Biochemical and immunological characterization of human opsonic α2SB glycoprotein: Its identity with cold-insoluble globulin, J. Biol. Chem. 253:4287.PubMedGoogle Scholar
  5. Bonventre, P. F., and Oxman, E., 1965, Phagocytosis and intracellular disposition of viable bacteria by the isolated perfused rat liver, J. Reticuloendothelial Soc. 2:313.Google Scholar
  6. Brodersen, M. P., and Burns, C. P., 1973, The separation of human monocytes from blood including biochemical observations, Proc. Soc. Exp. Biol. Med. 144:941.PubMedGoogle Scholar
  7. Check, I. J., Wolfman, H. C., Coley, T. B., and Hunter, R. L., 1979, Agglutination assay for human opsonic factor using gelatin-coated latex particles, J. Reticuloendothelial Soc. 25:351.Google Scholar
  8. Cline, M. J., Melmon, K. L., Davis, W. C., and Williams, H. E., 1968, Mechanism of endotoxin interaction with human leucocytes, Br. J. Haematol. 15:539.PubMedCrossRefGoogle Scholar
  9. Cohen, A. B., and Cline, M. J., 1971, The human alveolar macrophage: Isolation, cultivation in vitro, and studies of morphologic and functional characteristics, J. Clin. Invest. 50:1390.PubMedCrossRefGoogle Scholar
  10. Cohn, Z., 1963, The fate of bacteria within phagocytic cells. I. The degradation of isotopically labelled bacteria by polymorphonuclear leucocytes and macrophages, J. Exp. Med. 117:27.PubMedCrossRefGoogle Scholar
  11. Cohn, Z. A., and Benson, B., 1965a, The differentiation of mononuclear phagocytes: Morphology, cytochemistry and biochemistry, J. Exp. Med. 121:153.PubMedCrossRefGoogle Scholar
  12. Cohn, Z. A., and Benson, B., 1965b, The in vitro differentiation of mononuclear phagocytes. II. The influence of serum on granule formation, hydrolase production, and pinocytosis, J. Exp. Med. 121:835.PubMedCrossRefGoogle Scholar
  13. Cohn, Z. A., and Morse, S. I., 1959, Interactions between rabbit polymorphonuclear leucocytes and staphylococci, J. Exp. Med. 110:419.PubMedCrossRefGoogle Scholar
  14. DiLuzio, N. R., and Riggi, S. J., 1964, The development of a lipid emulsion for the measurement of reticuloendothelial function, J. Reticuloendothelial Soc. 1:136.Google Scholar
  15. Doran, J. E., Mansberger, A. R., and Reese, A. C., 1980, Cold insoluble globulin-enhanced phagocytosis of gelatinized targets by macrophage monolayers: A model system, J. Reticuloendothelial Soc. 27:471.Google Scholar
  16. Downey, R. J., and Diedrick, B. F., 1968, A new method for assessing particle ingestion by phagocytic cells, Exp. Cell Res. 50:483.PubMedCrossRefGoogle Scholar
  17. Fenn, W. O., 1921, The phagocytosis of solid particles. I. Quartz, J. Gen. Physiol. 3:439.PubMedCrossRefGoogle Scholar
  18. Filkins, J. P., and Smith, J. J., 1965, Plasma factor influencing carbon phagocytosis in the isolated perfused rat liver, Proc. Soc. Exp. Biol. Med. 119:1181.PubMedGoogle Scholar
  19. Fogelman, A. M., Seager, J., Hokom, M., and Edwards, P. A., 1979, Separation of and cholesterol synthesis by human lymphocytes and monocytes, J. Lipid Res. 20:379.PubMedGoogle Scholar
  20. Forsgren, A., Schmeling, D., and Zettervall, O., 1977, Quantitative phagocytosis by human polymorphonuclear leucocytes: Use of radiolabelled emulsions to measure the rate of phagocytosis, Immunology 32:491.PubMedGoogle Scholar
  21. Gardner, D. E., Graham, J. A., Miller, F. J., Illing, J. W., and Coffin, D. L., 1973, Technique for differentiating particles that are cell-associated or injested by macrophages, Appl. Microbiol. 25:471.PubMedGoogle Scholar
  22. Gibbs, D. L., and Roberts, R. B., 1975, The interaction in vitro between human polymorphonuclear leukocytes and Neisseria gonorrhoeae cultivated in the chick embryo, J. Exp. Med. 141:155.PubMedCrossRefGoogle Scholar
  23. Gigli, I., and Nelson, R. A., Jr., 1968, Complement dependent immune phagocytosis, Exp. Cell Res. 51:45.PubMedCrossRefGoogle Scholar
  24. Gray, S. J., and Sterling, K., 1950, The tagging of red cells and plasma proteins with radioactive chromium, J. Clin. Invest. 29:1604.PubMedCrossRefGoogle Scholar
  25. Griffin, F. M., and Silverstein, S. C., 1974, Segmental response of the macrophage plasma membrane to a phagocytic stimulus, J. Exp. Med. 139:323.PubMedCrossRefGoogle Scholar
  26. Gudewicz, P. W., Molnar, J., Lai, M. Z., Beezhold, D. W., Siefring, G. E., Credo, R. B., and Lorand, L., 1980, Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages, J. Cell Biol. 87:427.PubMedCrossRefGoogle Scholar
  27. Hallgren, R., and Stalenheim, G., 1976, Quantification of phagocytosis by human neutrophils: The use of radiolabelled staphylococcal protein A-IgG omplexes, Immunology 30:755.Google Scholar
  28. Hallgren, R., Jansson, L., and Verge, P., 1977, Kinetic studies of phagocytosis of IgG-coated latex particles with a thrombocyte counter, J. Lab Clin. Med. 90:786.PubMedGoogle Scholar
  29. Hanks, J. H., 1940, Quantitative aspects of phagocytosis as influenced by the number of bacteria and leukocytes, J. Immunol. 38:159.Google Scholar
  30. Hart, I. R., and Fidler, I. J., 1979, The collection, purification and characterization of canine peripheral blood monocytes, J. Reticuloendothelial Soc. 26:121.Google Scholar
  31. Hersey, P., 1973, Macrophage effector function: An in vitro system of assessment, Transplantation 15:282.PubMedCrossRefGoogle Scholar
  32. Hirsch, J. G., and Strauss, B., 1964, Studies on heat-labile opsonin in rabbit serum, J. Immunol. 92:145.PubMedGoogle Scholar
  33. Hoff, R., 1975, Killing in vitro of Trypanosoma cruzi by macrophages from mice immunized with T. cruzi or BCG, and absence of cross-immunity on challenge in vivo, J. Exp. Med. 142:299.PubMedCrossRefGoogle Scholar
  34. Holland, P., Holland, N. H., and Cohn, Z. A., 1972, The selective inhibition of macrophage phagocytic receptors by anti-membrane antibodies, J. Exp. Med. 135:458.PubMedCrossRefGoogle Scholar
  35. Jones, R. B., and Buchanan, T. M., 1978, Quantitative measurement of phagocytosis of Neisseria gonorrhoeae by mouse peritoneal macrophages, Infect. Immun. 20:732.PubMedGoogle Scholar
  36. Karnovsky, M. L., and Lazdins, J. K., 1978, Biochemical criteria for activated macrophages, J. Immunol. 121:809.PubMedGoogle Scholar
  37. Kavet, R. I., and Brain, J. D., 1980, Methods to quantify endocytosis: A review, J. Reticuloendothelial Soc. 27:201.Google Scholar
  38. Koenig, M. G., Heyssel, R. M., Melly, M. A., and Rogers, D. E., 1965, The dynamics of reticuloendothelial blockade, J. Exp. Med. 122:117.PubMedCrossRefGoogle Scholar
  39. Korn, E. D., and Weisman, R. A., 1967, Phagocytosis of latex beads by Acanthamoeba. II. Electron microscopic study of the initial events, J. Cell Biol. 34:219.PubMedCrossRefGoogle Scholar
  40. Lam, C., and Mathison, G. E., 1979, Phagocytosis measured as inhibition of uridine uptake: A method that distinguishes between surface adherence and ingestion, J. Med. Microbiol. 12:459.PubMedCrossRefGoogle Scholar
  41. Leake, E. S., Evens, D. G., and Myrvik, Q. N., 1971, Ultrastructural patterns of bacterial breakdown in normal and granulomatous rabbit alveolar macrophages, J. Reticuloendothelial Soc. 9:174.Google Scholar
  42. Lehrer, R. I., and Cline, M. J., 1969, Interaction of Candida albicans with human leukocytes and serum, J. Bacteriol. 98:996.PubMedGoogle Scholar
  43. Lennox, E. S., and Cohn, M., 1967, Immunoglobulins, Annu. Rev. Biochem. 36:365.PubMedCrossRefGoogle Scholar
  44. Mackaness, G. B., 1960, The phagocytosis and inactivation of staphylococci by macrophages of normal rabbits, J. Exp. Med. 112:35.PubMedCrossRefGoogle Scholar
  45. Mantovani, B., Rabinovitch, M., and Nussenzweig, V., 1972, Phagocytosis of immune complexes by macrophages: Different roles of the macrophage receptor sites for complement (C3) and for immunoglobulin (IgG), J. Exp. Med. 135:780.PubMedCrossRefGoogle Scholar
  46. Mason, R. J., Stossel, T. P., and Vaughan, M., 1973, Quantitative studies of phagocytosis by alveolar macrophages, Biochim. Biophys. Acta 304:864.PubMedCrossRefGoogle Scholar
  47. Melly, M. A., Duke, L. J., and Koenig, M. G., 1972, Studies on isolated cultured rabbit Kupffer cells, J. Reticuloendothelial Soc. 12:1.CrossRefGoogle Scholar
  48. Michell, R. H., Pancake, S. J., Noseworthy, J., and Karnovsky, M. L., 1969, Measurement of rates of phagocytosis: The use of cellular monolayers, J. Cell Biol. 40:216.PubMedCrossRefGoogle Scholar
  49. Molnar, J., McLain, S., Allen, C., Laga, H., Gara, A., and Gelder, F., 1977, The role of an α2-macroglobulin of rat serum in the phagocytosis of colloidal particles, Biochim. Biophys. Acta 493:37.PubMedCrossRefGoogle Scholar
  50. Molnar, J., Gelder, F. B., Lai, M. Z., Siefring, G. E., Credo, R. B., and Lorand, L., 1979, Purification of opsonically active human and rat cold-insoluble globulin (plasma fibronectin), Biochemistry 18:3909.PubMedCrossRefGoogle Scholar
  51. Mudd, S., McCutcheon, M., and Lucke, B., 1934, Phagocytosis, Physiol. Rev. 14:210.Google Scholar
  52. Munthe-Kaas, A. C., 1976, Phagocytosis in rat Kupffer cells in vitro, Exp. Cell Res. 99:319.PubMedCrossRefGoogle Scholar
  53. Munthe-Kaas, A. C., Berg, T., Seglen, P. O., and Seljelid, R., 1975, Mass isolation and culture of rat Kupffer cells, J. Exp. Med. 141:1.PubMedCrossRefGoogle Scholar
  54. Musson, R. A., and Henson, P. M., 1979, Humoral and formed elements of blood modulate the response of peripheral blood monocytes. I. Plasma and serum inhibit and platelets enhance monocyte adherence, J. Immunol. 122:2026.PubMedGoogle Scholar
  55. Myrvik, Q. N., Leake, E. S., and Fariss, B., 1961, Studies on pulmonary alveolar macrophages from the normal rabbit: A technique to procure them in a high state of purity, J. Immunol. 86:128.PubMedGoogle Scholar
  56. Myrvik, Q. N., Leake, E. S., and Oshima, S., 1962, A study of macrophages and epithelioid-like cells from granulomatous (BCG-induced) lungs of rabbits, J. Immunol. 89:745.PubMedGoogle Scholar
  57. North, R. J., 1968, The uptake of particulate antigens, J. Reticuloendothelial Soc. 5:203.Google Scholar
  58. Pearson, G. R., Freeman, B. A., and Hines, W. D., 1963, Thin-section electron micrographs of monocytes infected with Brucella suis, J. Bacteriol. 86:1123.Google Scholar
  59. Pisano, J. C., Filkens, J. P., and DiLuzio, N. R., 1968, Phagocytic and metabolic activities of isolated rat Kupffer cells, Proc. Soc. Exp. Biol. Med. 128:917.PubMedGoogle Scholar
  60. Poplack, D. G., Bonnard, G. D., Holiman, B. J., and Blaese, R. M., 1976, Monocyte-mediated antibody-dependent cellular cytotoxicity: A clinical test of monocyte function, Blood 48:809.PubMedGoogle Scholar
  61. Rabinovitch, M., 1967, The dissociation of the attachment and injestion phases of phagocytosis by macrophages, Exp. Cell Res. 46:19.PubMedCrossRefGoogle Scholar
  62. Rabinovitch, M., and DeStefano, M. J., 1973, Particle recognition by cultivated macrophages, J. Immunol. 110:695.PubMedGoogle Scholar
  63. Reed, P. W., and Tepperman, J., 1969, Phagocytosis-associated metabolism and enzymes in the rat polymorphonuclear leukocyte, Am. J. Physiol. 216:223.PubMedGoogle Scholar
  64. Roberts, J., and Quastel, J. H., 1963, Particle uptake by polymorphonuclear leucocytes and Ehrlich ascites-carcinoma cells, Biochem. J. 89:150.PubMedGoogle Scholar
  65. Romeo, D., Zabucchi, G., Marzi, T., and Rossi, F., 1973, Kinetic and enzymatic features of metabolic stimulation of alveolar and peritoneal macrophages challenged with bacteria, Exp. Cell Res. 78:423.PubMedCrossRefGoogle Scholar
  66. Root, R. K., Rosenthal, A. S., and Balestra, D. J., 1972, Abnormal bactericidal, metabolic, and lysosomal functions of Chediak-Higashi syndrome leukocytes, J. Clin. Invest. 51:649.PubMedCrossRefGoogle Scholar
  67. Saba, T. M., 1975, Aspecific opsonins, in: The Immune System and Infectious Diseases (E. Nester and F. Milgrom, eds.), pp. 489–504, Karger, Basel.Google Scholar
  68. Saba, T. M., Filkins, J. P., and DiLuzio, N. R., 1966, Properties of the “opsonic system” regulating in vitro hepatic phagocytosis, J. Reticuloendothelial Soc. 3:398.Google Scholar
  69. Saba, T. M., Blumenstock, F. A., Weber, P., and Kaplan, J. E., 1978, Physiologic role for coldinsoluble globulin in systemic host defense: Implications of its characterization as the opsonic α2SB glycoprotein, Ann. N.Y. Acad. Sci. 312:43.PubMedCrossRefGoogle Scholar
  70. Sbarra, A. J., and Karnovsky, M. L., 1959, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes, J. Biol. Chem. 234:1355.PubMedGoogle Scholar
  71. Silverstein, S. C., Steinman, R. M., and Cohn, Z. A., 1977, Endocytosis, Annu. Rev. Biochem. 46:669.PubMedCrossRefGoogle Scholar
  72. Silverstein, S. C., Michl, J., and Sung, S.-S. J., 1978, Phagocytosis, in: Transport of Macromolecules in Cellular Systems (S. C. Silverman, ed.), pp. 245–264, Dahlem Konferenzen, Berlin.Google Scholar
  73. Smith, M. R., and Wood, W. B., 1958, Surface phagocytosis: Further evidence of its destructive action upon fully encapsulated pneumococci in the absence of type-specific antibody, J. Exp. Med. 107:1.PubMedCrossRefGoogle Scholar
  74. Solomkin, J. S., Mills, E. L., Giebink, G. S., Nelson, R. D., Simmons, R. L., and Quie, P. G., 1978, Phagocytosis of Candida albicans by human leukocytes: Opsonic requirements, J. Infect. Dis. 137:30.PubMedCrossRefGoogle Scholar
  75. Stossel, T. P., 1974, Phagocytosis, N. Engl. J. Med. 290:833.PubMedCrossRefGoogle Scholar
  76. Stossel, T. P., 1975, Phagocytosis: Recognition and ingestion, Semin. Hematol. 12:83.PubMedGoogle Scholar
  77. Stossel, T. P., Polland, T. D., Mason, R. J., and Vaughan, M., 1971, Isolation and properties of phagocytic vesicles from polymorphonuclear leukocytes, J. Clin. Invest. 50:1745.PubMedCrossRefGoogle Scholar
  78. Stossel, T. P., Mason, R. J., Hartwig, J., and Vaughan, M., 1972, Quantitative studies of phagocytosis by polymorphonuclear leukocytes: Use of emulsions to measure the initial rate of phagocytosis, J. Clin. Invest. 51:615.PubMedCrossRefGoogle Scholar
  79. Stossel, T. P., Alper, C. A., and Rosen, F. S., 1973, Serum-dependent phagocytosis of paraffin oil emulsified with bacterial lipopolysaccharide, J. Exp. Med. 137:690.PubMedCrossRefGoogle Scholar
  80. Tan, J. S., Watanakunakorn, C., and Phari, J. P., 1971, A modified assay of neutrophil function: Use of lysostaphin to differentiate defective phagocytosis from impaired intracellular killing, J. Lab. Clin. Med. 78:316.PubMedGoogle Scholar
  81. Tizard, I. R., and Holmes, W. L., 1974, Phagocytosis of sheep erythrocytes by macrophages: Some observations under the scanning electron microscope, J. Reticuloendothelial Soc. 15:132.Google Scholar
  82. Tsan, M. F., and Berlin, R. D., 1971, Effect of phagocytosis on membrane transport of nonelectrolytes, J. Exp. Med. 134:1016.PubMedCrossRefGoogle Scholar
  83. Ulrich, F., and Zilversmit, D. B., 1970, Release from alveolar macrophages of an inhibitor of phagocytosis, Am. J. Physiol. 218:1118.PubMedGoogle Scholar
  84. Viken, K. E., 1974, 125I-labelling of Candida albicans by electrolysis, Acta Pathol. Microbiol. Scand. Sect. B 82:219.Google Scholar
  85. Walters, M. N. I., and Papadimitriou, J. M., 1978, Phagocytosis: A review, CRC Crit. Rev. Toxicol. 5:377.PubMedCrossRefGoogle Scholar
  86. Walters, M. N. I., Papadimitriou, J. M., and Robertson, T. A., 1976, The surface morphology of the phagocytosis of micro-organisms by peritoneal macrophages, J. Pathol. 118:221.PubMedCrossRefGoogle Scholar
  87. Wardley, R. C., Lawman, M. J., and Hamilton, F., 1980, The establishment of continuous macrophage cell lines from peripheral blood monocytes, Immunology 39:67.PubMedGoogle Scholar
  88. Weisman, R. A., and Korn, E. D., 1967, Phagocytosis of latex beads by Acanthamoeba. I. Biochemical properties, Biochemistry 6:485.PubMedCrossRefGoogle Scholar
  89. Yamamura, M., Boler, J., and Valdimarsson, H., 1977, Phagocytosis measured as inhibition of uridine uptake by Candida albicans, J. Immunol. Methods 14:19.PubMedCrossRefGoogle Scholar
  90. Zuckerman, S. H., and Douglas, S. D., 1979, Dynamics of the macrophage plasma membrane, Annu. Rev. Microbiol. 33:267.PubMedCrossRefGoogle Scholar
  91. Zuckerman, S. H., Ackerman, S. K., and Douglas, S. D., 1979, Long-term human peripheral blood monocyte cultures: Establishment, metabolism and morphology of primary human monocytemacrophage cell cultures, Immunology 38:401.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Paul W. Gudewicz
    • 1
  1. 1.Department of PhysiologyAlbany Medical College of Union UniversityAlbanyUSA

Personalised recommendations