Physiology pp 353-377 | Cite as

Iron Metabolism

  • Farid I. Haurani
  • Samir K. Ballas


The bone marrow of an average person needs about 30 mg of iron per day. Approximately 1 to 2 mg of iron is absorbed daily from a diet that contains roughly 10 mg of iron, in order to keep up with an equal daily loss of iron. This means that the daily needs of iron by the bone marrow are met primarily by the reutilization of iron from the RES. Therefore, this system plays a very important role in iron metabolism on a daily basis. Figure 1 attempts to depict the relationship of the RES to iron metabolism in its proper perspective as it relates to the other two major systems involved in iron metabolism, namely, the bone marrow and the gastrointestinal tract. However, this chapter deals primarily with the RE aspects of iron metabolism. First, the uptake of the iron carriers, red blood cells and hemoglobin or heme, by the RES is presented. This is followed by the processing in the RES and the release of iron from the RES back to the circulation. Finally, we conclude with iron storage. Figure 2 highlights these events of iron metabolism.


Serum Ferritin Human Erythrocyte Iron Metabolism Iron Release Plasma Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addison, G. M., Beamish, M. R., Hales, C. N., Hodgkins, M., Jacobs, A., and Llewellin, P., 1972, An immunoradiometric assay for ferritin in the serum of normal subjects and patients with iron deficiency and iron overload, J. Clin. Pathol. 25:326.PubMedCrossRefGoogle Scholar
  2. Alderman, E. M., Fudenberg, H. H., and Lovins, R. E., 1980, Binding of immunoglobulin classes to subpopulations of human red blood cells separated by density-gradient centrifugation, Blood 55:817.PubMedGoogle Scholar
  3. Alexanian, R., 1972, Erythropoietin excretion in hemolytic anemia and in the hypoferremia of chronic disease, Blood 40:946.Google Scholar
  4. Allen, D. W., and Jandl, J. H., 1961, Oxidative hemolysis and precipitation of hemoglobin. II. Role of thiols in oxidant drug action, J. Clin. Invest. 40:454.PubMedCrossRefGoogle Scholar
  5. Alper, C. A., Peters, J. H., Birtch, A. G., and Gardner, F. H., 1965, Haptoglobin synthesis. I. In vivo studies of the production of haptoglobin, fibrinogen and gamma-globulin by the canine liver, J. Clin. Invest. 44:574.PubMedCrossRefGoogle Scholar
  6. Ascensao, J. L., Kay, N. E., Earenfight-Engler, T., Koren, H. S., and Zanjani, E. D., 1981, Production of erythroid potentiating factor(s) by a human monocytic cell line, Blood 57:170.PubMedGoogle Scholar
  7. Bakken, A. F., Thaler, M. M., and Schmid, R., 1972, Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity, J. Clin. Invest. 51:530.PubMedCrossRefGoogle Scholar
  8. Ballas, S. K., and Burka, E. R., 1978, Catabolism of hemoglobin by human erythrocyte membranes, J. Lab. Clin. Med. 92:387.PubMedGoogle Scholar
  9. Ballas, S. K., and Burka, E. R., 1979, Protease activity in the human erythrocyte: Localization to the cell membrane, Blood 53:875.PubMedGoogle Scholar
  10. Barry, M., Flynn, D. M., Letsky, E. A., and Disdon, R. A., 1974, Long term chelation therapy in thalassemia major—Effect on liver iron concentration, liver histology and clinical progress, Br. Med. J. 2:16.PubMedCrossRefGoogle Scholar
  11. Bentley, D. P., Cavill, I., Ricketts, C., and Peake, S., 1979, A method for the investigation of reticuloendothelial iron kinetics in man, Br. J. Haematol. 43:619.PubMedCrossRefGoogle Scholar
  12. Beresford, C. H., Neale, R. J., and Brooks, O. G., 1971, Iron absorption and pyrexia, Lancet 1:568.PubMedCrossRefGoogle Scholar
  13. Berlin, N. I., and Berk, P. D., 1975, The biological life of the red cell, in: The Red Cell, 2nd ed., Vol. 2 (D. M. Surgenor, ed.), pp. 957–1019, Academic Press, New York.Google Scholar
  14. Bernstein, R. E., 1959, Alterations in metabolic energetics and cation transport during aging of red cells, J. Clin. Invest. 38:1572.PubMedCrossRefGoogle Scholar
  15. Beutler, E., 1977, Lipid storage diseases, in: Hematology (W. J. Williams, E. Beutler, A. J. Erslev, and R. W. Rundles, eds.), 2nd ed., pp. 1147–1155, McGraw-Hill, New York.Google Scholar
  16. Bienzle, U., and Pjura, W. J., 1977, Alteration of membrane proteins during erythrocyte aging, Clin. Chim. Acta 76:183.PubMedCrossRefGoogle Scholar
  17. Birgegard, G., 1980, The source of serum ferritin during infection, Clin. Sci. 59:385.PubMedGoogle Scholar
  18. Bocci, V., Pessina, G. P., Paulesu, L., Pacini, A., and Muscettola, M., 1978, Studies of factors regulating the aging of human erythrocytes. I. The role of pH and of divalent cations, Int. J. Biochem. 10:19.CrossRefGoogle Scholar
  19. Bocci, V., Pessina, G. P., and Paulesu, L., 1980, Studies of factors regulating the aging of human erythrocytes. III. Metabolism and fate of erythrocyte vesicles, Int. J. Biochem. 11:139.PubMedCrossRefGoogle Scholar
  20. Bonsignore, A., Fornaini, G., Fantoni, A., Leoncini, G., and Segni, P., 1964, Relationship between age and enzymatic activities in human erythrocytes from normal and fava bean sensitive subjects, J. Clin. Invest. 43:834.PubMedCrossRefGoogle Scholar
  21. Brok, F., Ramot, G. P., and Danon, D., 1966, Enzyme activities in human red blood cells of different age groups, Isr. J. Med. Sci. 2:291.PubMedGoogle Scholar
  22. Broxmeyer, H. E., DeSousa, M., Smithyman, A., Ralph, P., Hamilton, J., Kurland, J. I., and Bocknacki, J., 1980, Specificity and modulation of the action of lactoferrin, a negative feedback regulator of myelopoiesis, Blood 55:324.PubMedGoogle Scholar
  23. Bryce, C. F. A., and Crichton, R. R., 1973, Microheterogeneity in apoferritin molecules—Artifact, Hoppe-Seylers Z. Physiol. Chem. 354:344.PubMedGoogle Scholar
  24. Bush, J. A., Ashenbrucker, H., Cartwright, G. E., and Wintrobe, M. M., 1956, Anemia of infection: Kinetics of iron metabolism in anemia associated with chronic infection, J. Clin. Invest. 35:89.PubMedCrossRefGoogle Scholar
  25. Carrell, R. W., Winterbourn, C. C., and Rachmilewitz, E. A., 1975, Activated oxygen and hemolysis, Br. J. Haematol. 30:259.PubMedCrossRefGoogle Scholar
  26. Cartwright, G. E., 1966, The anemia of chronic disorders, Semin. Hematol. 3:351.PubMedGoogle Scholar
  27. Cartwright, G. E., and Deiss, A., 1975, Sideroblasts, siderocytes and sideroblastic anemia, N. Engl. J. Med. 292:185.PubMedCrossRefGoogle Scholar
  28. Cartwright, G. E., Gubler, C. J., and Wintrobe, M. M., 1950, Anemia of infection. XII. The effect of turpentine and colloidal thorium dioxide on plasma iron and plasma copper of dogs, J. Biol. Chem. 184:579.PubMedGoogle Scholar
  29. Chu, L. L. H., and Fineberg, R. A., 1969, On the mechanism of iron-induced synthesis of apoferritin in HeLa cells, J. Biol. Chem. 244:3847.PubMedGoogle Scholar
  30. Coburn, R. F., Williams, W. F., and Forster, R. E., 1964, Effect of erythrocyte destruction on carbon monoxide production in man, J. Clin. Invest. 43:1098.PubMedCrossRefGoogle Scholar
  31. Coburn, R. F., Williams, W. F., and Kahn, S. B., 1966, Endogenous carbon monoxide production in patients with hemolytic anemia, J. Clin. Invest. 45:460.PubMedCrossRefGoogle Scholar
  32. Cohen, G., and Hochstein, P., 1961, Glucose-6-phosphate dehydrogenase and detoxification of hydrogen peroxide in human erythrocytes, Science 134:1756.PubMedCrossRefGoogle Scholar
  33. Colleran, E., and O’Carra, P., 1970, Specificity of biliverden reductase, Biochem. J. 119:16.Google Scholar
  34. Cortell, S., and Conrad, M. E., 1967, Effect of endotoxin on iron absorption, Am. J. Physiol. 213:43.PubMedGoogle Scholar
  35. Crichton, R. R., 1973, Structure and function of ferritin, Angew. Chem. Int. Ed. Engl. 12:57.PubMedCrossRefGoogle Scholar
  36. Crosby, W. H., 1963, The control of iron balance by the intestinal mucosa, Blood 22:441.PubMedGoogle Scholar
  37. Cruz, W. O., Hahn, P. F., and Bale, W. F., 1942, Hemoglobin radioactive iron liberated by erythrocyte destruction (acetylphenylhydrazine) promptly reutilized to form new hemoglobins, Am. J. Physiol. 135:595.Google Scholar
  38. Custer, G., Balcerzak, S., and Rinehart, J., 1982, Human macrophage hemoglobin-iron metabolism in vitro, Am. J. Hematol. 13:23.PubMedCrossRefGoogle Scholar
  39. Douglas, S. W., and Adamson, J. W., 1975, The anemia of chronic disorders: Studies of marrow regulation and iron metabolism, Blood 45:55.PubMedGoogle Scholar
  40. Dresch, C., and Najean, Y., 1972, Hemoglobin iron kinetics in man, Eur. J. Clin. Biol. Res. 27:930.Google Scholar
  41. Drysdale, J. W., 1970, Microheterogeneity in ferritin molecules, Biochim. Biophys. Acta 207:256.PubMedCrossRefGoogle Scholar
  42. Drysdale, J. W., and Munro, H. N., 1966, Regulation of synthesis and turnover of ferritin in rat liver, J. Biol. Chem. 241:3630.PubMedGoogle Scholar
  43. Dubach, R., Callender, S. T. E., and Moore, C. V., 1948, Studies in iron transportation and metabolism. VI. Absorption of radioactive iron in patients with fever and with anemias of varied etiology, Blood 3:526.PubMedGoogle Scholar
  44. Durocher, J. R., Payne, R. C., and Conrad, M. E., 1975, Role of sialic acid in erythrocyte survival, Blood 45:11.PubMedGoogle Scholar
  45. Emery, T., 1982, Iron metabolism in humans and plants, Am. Sci. 70:626.PubMedGoogle Scholar
  46. Fillet, G., 1977, Le fer dans l’organisme: Metabolisme et reutilization, Masson, Paris.Google Scholar
  47. Fillet, G., Cook, J. D., and Finch, C. A., 1974, Storage iron kinetics. VII. A biologic model for reticuloendothelial iron transport, J. Clin. Invest. 53:1527.PubMedCrossRefGoogle Scholar
  48. Finch, C. A., Cook, J. D., Eschbach, J. W., Harker, L. A., Funk, D. D., Marsaglia, G., Hillman, R. S., Slichter, S., Adamson, J. W., Ganzoni, A., and Giblett, E. R., 1970, Ferrokinetics in man, Medicine 49:17.PubMedCrossRefGoogle Scholar
  49. Fineberg, R. A., and Greenberg, D. M., 1955, Ferritin biosynthesis. II. Acceleration of synthesis by the administration of iron, J. Biol. Chem. 214:97.PubMedGoogle Scholar
  50. Freireich, E. J., Miller, A., Emerson, C. P., and Ross, J. F., 1957, The effect of inflammation on the utilization of erythrocyte and transferrin bound radioiron for red cell production, Blood 12:972.PubMedGoogle Scholar
  51. Ganzoni, A. M., Oakes, R., and Hillman, R. S., 1971, Red cell aging in vivo, J. Clin. Invest. 50:1373.PubMedCrossRefGoogle Scholar
  52. Garby, L., and Noyes, W. D., 1959, Studies of hemoglobin metabolism. I. The kinetic properties of the plasma hemoglobin pool in normal man, J. Clin. Invest. 38:1479.PubMedCrossRefGoogle Scholar
  53. Gattegno, L., Fabia, F., Bladier, D., and Cornillot, P., 1979, Physiological aging of red blood cells and changes in membrane carbohydrates, Biomedicine 30:194.PubMedGoogle Scholar
  54. Gayer, G., Linss, W., and Schaaf, P., 1972, The distribution pattern of anionic sites at the human erythrocyte surface as revealed by the colloidal iron method, Acta Histochem. 42:138.Google Scholar
  55. Gordon, S., and Beam, A. G., 1966, Hemoglobin binding capacity of isolated haptoglobin polypeptide chains, Proc. Soc. Exp. Biol. Med. 121:846.PubMedGoogle Scholar
  56. Granick, S., 1946, Ferritin, its properties and significance for iron metabolism, Chem. Rev. 38:379.PubMedCrossRefGoogle Scholar
  57. Green, S., and Mazur, J., 1957, Relation of uric acid metabolism to release of iron from hepatic ferritin, J. Biol. Chem. 227:653.Google Scholar
  58. Greenwalt, T. J., and Lau, F. O., 1978, Evaluation of toluidine blue for measuring erythrocyte membrane loss during in vivo aging, Br. J. Haematol. 39:545.PubMedCrossRefGoogle Scholar
  59. Grieger, T. A., and Kluger, M. J., 1978, Fever and survival: The role of serum iron, J. Physiol. (London) 279:187.Google Scholar
  60. Gutnisky, A., and Van Dyke, D., 1963, Normal response to erythropoietin or hypoxia in rats made anemic with turpentine abscess, Proc. Soc. Exp. Biol. Med. 112:75.PubMedGoogle Scholar
  61. Haidas, S., Labié, D., and Kaplan, J. C., 1971, 2,3-Diphosphoglycerate content and oxygen affinity as a function of red cell age in normal individuals, Blood 38:463.PubMedGoogle Scholar
  62. Hanstein, A., and Muller-Eberhard, U., 1968, Concentration of serum hemopexin in healthy children and adults and in those with a variety of hematological disorders, J. Lab. Clin. Med. 71:232.Google Scholar
  63. Harrison, P. M., Hoare, R. J., Hoy, T. G., and Macara, I. G., 1974, Ferritin and haemosiderin: Structure and function, in: Iron in Biochemistry and Medicine (A. Jacobs and M. Woorwood, eds.), pp. 73–114, Academic Press, New York.Google Scholar
  64. Haurani, F. I., and Green, D., 1967, Primary defective iron reutilization: Response to testosterone therapy, Am. J. Med. 42:151.PubMedCrossRefGoogle Scholar
  65. Haurani, F. I., and O’Brien, R., 1972, A model system for the release of iron from the reticuloendothelial system, J. Reticuloendothelial Soc. 12:29.Google Scholar
  66. Haurani, F. I., and O’Brien, R., 1973, The erythropoietic effect of a reticuloendothelial blocking agent, J. Reticuloendothelial Soc. 13:126.Google Scholar
  67. Haurani, F. I., Young, K., and Tocantins, L. M., 1963, Reutilization of iron in anemia complicating malignant neoplasms, Blood 22:73.PubMedGoogle Scholar
  68. Haurani, F. I., Burke, W., and Martinez, E. J., 1965a, Defective reutilization of iron in the anemia of inflammation, J. Lab. Clin. Med. 65:560.PubMedGoogle Scholar
  69. Haurani, F. I., Green, D., and Young, K., 1965b, Iron absorption in hypoferremia, Am. J. Med. Sci. 249:537.PubMedCrossRefGoogle Scholar
  70. Haurani, F. I., Meyer, A., and O’Brien, R., 1973, Production of transferrin by the macrophage, J. Reticuloendothelial Soc. 14:309.Google Scholar
  71. Herman, S. P., Golde, D. W., and Cline, M. J., 1978, Neutrophil products that inhibit cell proliferation—Relation to granulocytic chalone, Blood 51:207.PubMedGoogle Scholar
  72. Hershko, C., Cook, J. D., and Finch, C. A., 1974, Storage iron kinetics: Effects of inflammation on iron exchange in rat, Br. J. Haematol. 28:67.PubMedCrossRefGoogle Scholar
  73. Hillman, R. S., and Henderson, P. A., 1969, Control of marrow production by the level of iron supply, J. Clin. Invest. 48:454.PubMedCrossRefGoogle Scholar
  74. Hume, R., Dagg, J. H., and Goldberg, A., 1973, Refractory anemia with dysproteinemia: Long-term therapy with low-dose corticosteroids, Blood 41:27.PubMedGoogle Scholar
  75. Jacobs, A., and Worwood, M., 1975, The biochemistry of ferritin and its clinical implications, Prog. Hematol. 9:1.PubMedGoogle Scholar
  76. Jacobs, A., Miller, F., Worwood, M., Beamish, M. R., and Wardrop, C. A., 1972, Ferritin in the serum of normal subjects and patients with iron deficiency and iron overload, Br. Med. J. 4:206.PubMedCrossRefGoogle Scholar
  77. Jandl, J. H., Greenberg, M. S., Yonemoto, R. H., and Cartle, W. B., 1956, Clinical determination of the sites of red cell sequestration in hemolytic anemias, J. Clin. Invest. 35:842.PubMedCrossRefGoogle Scholar
  78. Kadlubowski, M., 1978, The effect of in vivo aging of the human erythrocyte on the protein of the plasma membrane: A characterization, Int. J. Biochem. 9:67.PubMedCrossRefGoogle Scholar
  79. Kadlubowski, M., and Agutter, P. S., 1977, Changes in the activities of some membrane-associated enzymes during in vivo aging of the normal human erythrocyte, Br. J. Haematol. 37:111.PubMedGoogle Scholar
  80. Kadlubowski, M., and Harris, J. R., 1974, The appearance of a protein in the human erythrocyte membrane during aging, FEBS Lett. 47:252.PubMedCrossRefGoogle Scholar
  81. Kampschmidt, R. F., and Arredondo, M. I., 1963, Some effects of endotoxin upon plasma iron turnover in the rat, Proc. Soc. Exp. Biol. Med. 113:142.PubMedGoogle Scholar
  82. Kanakakorn, K., Cavill, I., and Jacobs, A., 1973, The metabolism of intravenously administered irondextran, Br. J. Haematol. 25:637.PubMedCrossRefGoogle Scholar
  83. Katz, J. H., 1961, Iron and protein kinetics studied by means of doubly labeled human crystalline transferrin, J. Clin. Invest. 40:2143.PubMedCrossRefGoogle Scholar
  84. Kay, M. M., 1978, Role of physiologic autoantibody in the removal of senescent human red cells, J. Supramol. Struct. 9:555.PubMedCrossRefGoogle Scholar
  85. Keene, W. R., and Jandl, J. H., 1965, The sites of hemoglobin catabolism, Blood 26:705.PubMedGoogle Scholar
  86. Keitt, A. S., Smith, T. W., and Jandl, J. H., 1966, Red cell “pseudmosaidsm” in congenital methemoglobinemia, N. Engl. J. Med. 275:397.CrossRefGoogle Scholar
  87. Kirpatrick, F. H., Mushs, A. G., Kostok, R. K., and Gabel, C. W., 1979, Dense (aged) circulating red cells contain normal concentrations of adenosine triphosphate (ATP), Blood 54:946.Google Scholar
  88. Kochan, I., 1973, The role of iron in bacterial infections with special consideration of host-tubercle bacillus interaction, Curr. Top. Microbiol. Immunol. 60:1.PubMedCrossRefGoogle Scholar
  89. Kumar, R., Arora, B. B., Singh, U., and Mehrotra, G. C., 1978a, Storage iron in acute and chronic infection, Indian J. Med. Res. 68:503.PubMedGoogle Scholar
  90. Kumar, R., Singh, U., and Mehrotra, G. C., 1978b, Mechanisms of hypoferraemia in acute and chronic infection, Indian J. Med. Res. 68:508.PubMedGoogle Scholar
  91. LaCelle, P. L., and Arkin, B., 1970, Acquired rigidity: A possible determinant of normal RBC life span, Blood 36:837.Google Scholar
  92. Leonhardt, H., Grigoleit, H. G., and Reinhardt, I., 1978, Erythrocyte deformability in a red cell aging model, Ric. Clin. Lab. 8:65.PubMedGoogle Scholar
  93. Lichtman, M. A., and Murphy, M. S., 1975, Red cell adenosine triphosphate in hypoproliferative anemia with and without chronic renal disease: Relationship to hemoglobin deficit and plasma inorganic phosphate, Blood Cells 1:467.Google Scholar
  94. Lichtman, M. A., and Weed, R. I., 1972, Divalent cation content of a normal and ATP depleted erythrocyte membrane, Nouv. Rev. Fr. Hematol. 12:799.PubMedGoogle Scholar
  95. Lipschitz, D. A., Cook, J. D., and Finch, C. A., 1974, A clinical evaluation of serum ferritin as an index of iron stores, N. Engl. J. Med. 290:1213.PubMedCrossRefGoogle Scholar
  96. Lorand, L., Weismann, L. B., Epel, D. L., and Bruner-Lorand, J., 1976, Role of the intrinsic transglutaminase in the Ca2+-mediated crosslinking of erythrocyte proteins, Proc. Natl. Acad. Sci. USA 73:4479.PubMedCrossRefGoogle Scholar
  97. Lukens, J. N., 1973, Control of Erythropoiesis in rats with adjuvant-induced chronic inflammation, Blood 41:37.PubMedGoogle Scholar
  98. Lutz, H. U., and Fehr, J., 1979, Total sialic acid content of glycophorins during senescence of human red blood cells, J. Biol. Chem. 254:11177.PubMedGoogle Scholar
  99. Lutz, H. U., Liu, S. C., and Polek, J., 1977, Release of spectrin free vesicles from human erythrocytes during ATP depletion, J. Cell Biol. 73:548.PubMedCrossRefGoogle Scholar
  100. Masson, P., 1970, in: La Lactoferrin, Editions Arscia, SA, Brussels.Google Scholar
  101. Muller-Eberhard, U., 1976, Hemopexin, N. Engl. J. Med. 283:1090.CrossRefGoogle Scholar
  102. Noyes, W. D., and Garby, L., 1967, Rate of haptoglobin synthesis in normal man: Determinations by the return to normal levels following hemoglobin infusion, Scand. J. Clin. Lab. Invest. 20:33.PubMedGoogle Scholar
  103. Noyes, W. D., Bothwell, T. H., and Finch, G. A., 1960, The role of the reticuloendothelial cell in iron metabolism, Br. J. Haematol. 6:43.PubMedCrossRefGoogle Scholar
  104. Nyman, M., 1959, Serum haptoglobin methodological and chemical studies, Scand. J. Clin. Lab Invest. 39:1.Google Scholar
  105. Pekarek, R. S., Bostian, K., Bartelloni, P. J., Calia, F. M., and Beisel, W. R., 1969, The effects of Francisella tularensis infection on iron metabolism in man, Am. J. Med. Sci. 258:14.PubMedCrossRefGoogle Scholar
  106. Pekarek, R. S., Wamemacher, R. W., Jr., and Beisel, W. R., 1972, The effect of leukocytic endogenous mediator (LEM) on the tissue distribution of zinc and iron, Proc. Soc. Exp. Biol. Med. 140:685.PubMedGoogle Scholar
  107. Peschle, C., Marone, G., Genovere, A., Rappaport, I. A., and Condorelli, M., 1976, Increased erythropoietin production in anephric rats with hyperplasia of the reticuloendothelial system induced by colloidal carbon or zymosan, Blood 47:325.PubMedGoogle Scholar
  108. Pessina, G. P., Paulesu, L., and Bocci, V., 1980, Studies of factors regulating the aging of human erythrocytes. II. Metabolic depletion of erythrocytes is not accompanied by a decrease of their sialic acid content during blood bank storage, Vox Sang. 37:338.CrossRefGoogle Scholar
  109. Peterson, R. E., 1953, Plasma radioactive iron turnover in acute viral hepatitis, Proc. Soc. Exp. Biol. Med. 84:47.PubMedGoogle Scholar
  110. Phillips, M. E., and Thorbecke, G. J., 1966, Studies on the serum proteins of chimeras. I. Identification and study of the site of origin of donor type serum proteins in adult rat into mouse chimers, Int. Arch. Allergy Appl. Immunol. 29:553.PubMedCrossRefGoogle Scholar
  111. Powell, L. W., Alpert, E., Isselbacher, K. J., and Drysdale, J. W., 1975, Human isoferritins: Organ specific iron and apoferritin distribution, Br. J. Haematol. 30:47.PubMedCrossRefGoogle Scholar
  112. Reeves, W. B., and Haurani, F. I., 1980, Clinical applicability and usefullness of ferritin measurements, Ann. Clin. Lab. Sci. 10:529.PubMedGoogle Scholar
  113. Reeves, W. B., Fairman, R. M., and Haurani, F. I., 1981, Influence of hormones on the release of iron by macrophages, J. Reticuloendothelial Soc. 29:173.Google Scholar
  114. Rich, I. N., and Kubanek, B., 1982, Release of erythropoietin from macrophages mediated by phagocytosis of crystalline silica, J. Reticuloendothelial Soc. 31:17.Google Scholar
  115. Richter, G. W., 1959, The cellular transformation of injected colloidal iron complexes into ferritin and hemosiderin in experimental animals, J. Exp. Med. 109:197.PubMedCrossRefGoogle Scholar
  116. Roeser, H. P., Lee, G. R., Nacht, S., and Cartwright, G. E., 1970, The role of ceruloplasmin in iron metabolism J. Clin. Invest. 49:2408.PubMedCrossRefGoogle Scholar
  117. Ross, J. D., and Muller-Eberhard, U., 1970, Pharmacologic induction of serum hemopexin by 3-methylcholanthrene and allylisopropylacetamide, J. Lab. Clin. Med. 75:694.PubMedGoogle Scholar
  118. Sears, D. A., Friedman, J., and White, D. R., 1975, Binding of intracellular protein to the erythrocyte membrane during incubation, J. Lab. Clin. Med. 86:722.PubMedGoogle Scholar
  119. Shattil, S. J., and Cooper, R. A., 1971, Maturation of macroreticulocyte membranes in vivo, Blood 38:806.Google Scholar
  120. Shiga, T., Maeda, N., Suda, T., Kon, K., and Sekiya, M., 1979, The decreased membrane fluidity of in vivo aged human erythrocytes: A spin label study, Biochim. Biophys. Acta 553:84.PubMedCrossRefGoogle Scholar
  121. Shoden, A., Gabrio, B. W., and Finch, C. A., 1953, The relationship between ferritin and hemosiderin in rabbits and man, J. Biol. Chem. 204:823.PubMedGoogle Scholar
  122. Song, S. H., and Groom, A. C., 1972, Sequestration and possible maturation of reticulocytes in the normal spleen, Can. J. Physiol. Pharmacol. 50:400.PubMedCrossRefGoogle Scholar
  123. Sturgeon, P., and Shoden, A., 1964, Mechanisms of iron storage, in: Iron Metabolism: An International Symposium (F. Gross, ed.), pp. 121–146, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  124. Tenhunen, R., Marver, H. S., and Schmid, R., 1968, The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase, Proc. Natl. Acad. Sci. USA 61:748.PubMedCrossRefGoogle Scholar
  125. Thomas, D. B., and Briscoe, C. V., 1973, Effects of intravenous injections of endotoxin on distribution of cells between murine blood and bone marrow, J. Anat. 114:407.PubMedGoogle Scholar
  126. Udupa, K. B., and Lipschitz, D. A., 1982, Endotoxin-induced suppression of erythropoiesis: The role of erythropoietin and a heme synthesis stimulating factor, Blood 59:1267.PubMedGoogle Scholar
  127. Vannotti, A., 1957, The role of the reticuloendothelial system in iron metabolism, in: Physiopathology of the Reticuloendothelial System (B. N. Halpern, B. Benacerraf, and J. F. Delafresnaye, eds.), pp. 172–187, Thomas, Springfield, Ill.Google Scholar
  128. van Snick, J. L., Markowitz, B., and Masson, P. L., 1977, The ingestion and digestion of human lactoferrin by mouse peritoneal macrophages and the transfer of its iron into ferritin, J. Exp. Med. 146:817.PubMedCrossRefGoogle Scholar
  129. Ward, H. P., Kurnich, J. E., and Pisarczyk, M. J., 1971, Serum levels of erythropoietin in anemia associated with chronic infection, malignancy and primary hematopoietic disease, J. Clin. Invest. 50:332.PubMedCrossRefGoogle Scholar
  130. Weed, R. I., and Reed, C., 1966, Membrane alterations and red cell destruction, Am. J. Med. 41:681.PubMedCrossRefGoogle Scholar
  131. Weinberg, E. D., 1974, Iron and susceptibility to infectious disease, Science 184:952.PubMedCrossRefGoogle Scholar
  132. Williams, A. R., and Morris, D. R., 1980, The internal viscosity of the human erythrocyte may determine its life span in vivo, Scand. J. Haematol. 24:57.PubMedCrossRefGoogle Scholar
  133. Wintrobe, M. M., Grinstein, M., Dubach, J. J., Humphreys, S. R., Ashenbrucker, H., and Worth, W., 1947, The anemia of infection. VI. The influence of cobalt on the anemia associated with inflammation, Blood 2:323.PubMedGoogle Scholar
  134. Yamada, H., 1968, Clinical studies on iron kinetics. II. Iron-kinetics studies in patients with malignant neoplasms with special references to ferrokinetics and 59Fe labeled iron-dextran studies, Nagoya J. Med. Sci. 30:491.PubMedGoogle Scholar
  135. Zucker, S., Lysik, R. M., and Di Stefan, J. F., 1980, Cancer cell inhibition of erythropoiesis, J. Lab. Clin. Med. 96:770.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Farid I. Haurani
    • 1
  • Samir K. Ballas
    • 1
  1. 1.Cardeza Foundation for Hematologic Research, Department of MedicineThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations