Advertisement

Surface Forces in Phagocytosis

  • Carel J. van Oss
  • Darryl R. Absolom
  • A. Wilhelm Neumann

Abstract

In the past decade considerable advances have been made by our groups, in Buffalo and in Toronto, in the measurement of the physical surface forces involved in cell adhesion and phagocytic engulfment (by using the contact angle method), as well as in the interpretation of the relative roles played by various surface phenomena in in vitro and in vivo phagocytosis. In 1975 (van Oss et al.) and in 1978 (van Oss) we published reviews that may be regarded as interim reports as far as our theoretical understanding of the role of surface phenomena in phagocytosis is concerned. By 1979 the realization that van der Waals interactions could be repulsive and the discovery of the precise conditions under which these interactions become either attractive or repulsive (Neumann et al., 1979a; van Oss et al., 1979a) opened new vistas in the fields of cell-particle as well as cell-protein and even antigen-antibody interactions (van Oss et al., 1980a). This research culminated in the development of new (non-contact angle) methods for measuring cellular surface tensions (Neumann et al., 1979b; Absolom et al., 1979), which also facilitated the theoretical treatment of cellular interactions in liquid media of surface tensions lower than that of water, i.e., in media more closely resembling various biological fluids. An extension of these new methods, involving cell adhesion to various polymer surfaces (Neumann et al., 1979b), to protein adsorption to similar polymer surfaces (van Oss et al., 1979b), made it Research Institute, The Hospital for Sick Children, Toronto, and Department of Mechanical Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada possible to estimate the surface thermodynamic role played by protein (especially IgG) adsorption onto various bacteria in their phagocytic ingestion, in aqueous media as well as in media of lower surface tension (Neumann et al., 1982). These new developments for the first time open the way to attempts to arrive at a quantitative estimation of the principal physical surface forces involved in phagocytic engulfment in aqueous media and in biological fluids.

Keywords

Surface Tension Contact Angle Human Serum Albumin Phagocytic Activity Lower Surface Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absolom, D. R., Neumann, A. W., Zingg, W., and van Oss, C. J., 1979, Thermodynamic studies of cellular adhesion, Trans. Am. Soc. Artif. Intern. Organs 25:152.PubMedCrossRefGoogle Scholar
  2. Absolom, D. R., van Oss, C. J., Genco, R. J., Francis, D. W., Zingg, W., and Neumann, A. W., 1980a, Surface thermodynamics of normal and pathological human granulocytes, Cell Biophys. 2:113.PubMedGoogle Scholar
  3. Absolom, D. R., van Oss, C. J., Neumann, A. W., and Zingg, W., 1980b, Determination of surface tensions of proteins. II. Surface tension of serum albumin altered at the protein-air interface, 2nd International Chemical Congress on the North American Continent, Abstracts ACS Meeting, Las Vegas.Google Scholar
  4. Absolom, D. R., Zingg, W., van Oss, C. J., and Neumann, A. W., 1981, Determination of surface tensions of proteins. II. Surface tension of serum albumin altered at the protein-air interface, Biochim. Biophys. Acta 670:74.PubMedCrossRefGoogle Scholar
  5. Absolom, D. R., van Oss, C. J., Zingg, W., and Neumann, A. W., 1982a, Phagocytosis as a surface phenomenon: Opsonization by aspecific adsorption of IgG as a function of bacterial hydrophobicity, J. Reticuloendothelial Soc. 31:59.Google Scholar
  6. Absolom, D. R., Francis, D. W., Zingg, W., van Oss, C. J., and Neumann, A. W., 1982b, Phagocytosis of bacteria by platelets: Surface thermodynamics, J. Colloid Interface Sci. 85:168.CrossRefGoogle Scholar
  7. Adam, D., Schaffert, W., and Marget, W., 1974, Enhanced in vitro phagocytosis of Listeria monocytogenes by human monocytes in the presence of ampicillin, tetracycline and chloramphenicol, Infect. Immun. 9:811.PubMedGoogle Scholar
  8. Albertsson, P. A., 1971, Partition of Cell Particles and Macromolecules, Wiley-Interscience, New York.Google Scholar
  9. Alexander, J. W., and Good, R. A., 1970, Immunobiology for Surgeons, p. 10, Saunders, Philadelphia.Google Scholar
  10. Arend, W. P., and Mannik, M., 1971, Studies on antigen-antibody complexes. II. Quantification of tissue uptake of complement-depleted rabbits, J. Immunol. 107:63.PubMedGoogle Scholar
  11. Bangham, A. D., 1964, The adhesiveness of leukocytes with special reference to zeta potential, Ann. N.Y. Acad. Sci. 116:945.PubMedCrossRefGoogle Scholar
  12. Bernstein, J. M., and Gillman, C. F., 1976, Phagocytic dysfunction as a cause of recurrent upper respiratory disease, Trans. Am. Acad. Ophthalmol. Otolaryngol. 82:509.Google Scholar
  13. Blumenstock, F. A., Saba, T. M., Weber, P., and Laffin, R., 1978, Biochemical and immunological characterization of human opsonic α2 SB glycoprotein: Its identity with cold insoluble globulin, J. Biol. Chem. 253:4287.PubMedGoogle Scholar
  14. Cianciola, L. J., Genco, R. J., Patters, R. J., McKenna, M. R., and van Oss, C. J., 1977, Defective polymorphonuclear leukocyte function in a human periodontal disease, Nature (London) 265:445.CrossRefGoogle Scholar
  15. Cooper, G. N., and Houston, B., 1964, Effects of simple lipids on the phagocytic properties of peritoneal macrophages. II. Studies on the phagocytic potential of cell populations, Aust. J. Exp. Biol. Med. Sci. 42:429.PubMedCrossRefGoogle Scholar
  16. Cooper, G. N., and West, D., 1962, Effects of simple lipids on the phagocytic properties of peritoneal macrophages. I. Stimulatory effects of glyceryl trioleate, Aus. J. Exp. Biol. 40:485.CrossRefGoogle Scholar
  17. Cunningham, R. K., Söderström, T. O., Gillman, C. F., and van Oss, C. J., 1975, Phagocytosis as a surface phenomenon. V. Contact angles and phagocytosis of rough and smooth strains of Salmonella typhimurium, and the influence of specific antiserum, Immunol. Commun. 4:429.PubMedGoogle Scholar
  18. Daniels, S. L., 1967, Separation of bacteria by adsorption onto ion-exchange resins, Ph.D. dissertation, University of Michigan, Ann Arbor.Google Scholar
  19. Davies, W., 1975, Interactions between particles and cells, Ph.D. dissertation, University of Sydney, Australia.Google Scholar
  20. Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S., and Wood, W. B., 1973, Microbiology, pp. 633–634, Harper & Row (Hoeber), New York.Google Scholar
  21. Dy, M., Dimitriu, A., Thomson, N., and Hamburger, J., 1974, A macrophage adherence test, Ann. Immunol. Inst. Pasteur 125c:451.Google Scholar
  22. Fagundus, A. M., 1980, Physico-chemical and immunochemical studies on circulating immune complexes in systemic chronic serum sickness of the rabbit, Ph.D. dissertation, SUNY, Buffalo, p. 117.Google Scholar
  23. Fauve, R. M., 1974, Immunostimulation with phospholipids, in: Activation of Macrophages (W. H. Wagner, H. Hahn, and R. Evans, eds.), pp. 157–176. Excerpta Medica, Amsterdam.Google Scholar
  24. Germuth, F. C., Sentrefit, L. B., and Dreesman, G. R., 1972, Immune complex disease. V. The nature of circulating immune complexes with glomeruli alterations in the chronic BSA-rabbit system, Johns Hopkins Med. J. 130:344.PubMedGoogle Scholar
  25. Gigli, I., and Nelson, R. A., 1968, Complement dependent immune phagocytosis, Exp. Cell Res. 51:45.PubMedCrossRefGoogle Scholar
  26. Good, R. J., 1964, Theory for the estimation of surface and interfacial energies. VI. Surface energies of some fluorocarbon surfaces from contact angle measurements, Adv. Chem. Ser. 43:74.CrossRefGoogle Scholar
  27. Hed, J., 1977, The extinction of crystal violet and its use to differentiate between attached and ingested microorganisms in phagocytosis, FEMS Lett. 1:357.CrossRefGoogle Scholar
  28. Hed, J., 1979, Studies on phagocytosis by human polymorpho-nuclear leukocytes using a new assay which allows distinction between attachment and ingestion, M.D. dissertation, Linköping University, Medical Microfilms #74, Linköping.Google Scholar
  29. Heremans, J. F., 1975, The secretory immune system, Int. Convoc. Immunol. 4:376.Google Scholar
  30. Holden, J. W., and Englard, A., 1979, Macrophage activation and proliferation, in: Phagocytosis (Y. Kokubun and N. Kobayashi, eds.), pp. 147–168, University Park Press, Baltimore.Google Scholar
  31. Hosking, C. S., Fitzgerald, M. G., and Shelton, M. J., 1977, Results of immune function testing in children with recurrent infections, Aus. Paediatr. J. 13:(Suppl.):61.Google Scholar
  32. Joffe, E. W., and Mudd, S., 1935, A paradoxical relation between zeta potential and suspension stability on S and R variants of intestinal bacteria, J. Gen. Physiol. 18:599.PubMedCrossRefGoogle Scholar
  33. Kitchen, A. G., and Megirian, R., 1971, Heparin enhancement of Kupffer cell phagocytosis in vitro, J. Reticuloendothelial Soc. 9:13.Google Scholar
  34. Kozel, T. R., Reiss, E., and Cherniak, R., 1980, Concomitant but not casual association between surface charge and inhibition of phagocytosis by cryptococcal polysaccharide, Infect. Immun. 29:295.PubMedGoogle Scholar
  35. Labaw, L. W., and Davies, D. R., 1971, An electron microscopic study of human gamma G1 immunoglobulin crystals, J. Biol. Chem. 246:3760.PubMedGoogle Scholar
  36. Louria, D. B., 1974, Superinfection: A partial overview, in: Opportunistic Pathogens (J. E. Prier and H. Friedman, eds.), pp. 1–18, University Park Press, Baltimore.Google Scholar
  37. Mannik, M., and Arend, W. P., 1971, Fate of preformed immune complexes in rabbits and rhesus monkeys, J. Exp. Med. 134:19s.PubMedGoogle Scholar
  38. Mannik, M., Arend, W. P., Hall, A. P., and Gilliland, B. C, 1971, Studies on antigen-antibody complexes. I. Elimination of soluble complexes from rabbit circulation, J. Exp. Med. 133:713.PubMedCrossRefGoogle Scholar
  39. Mudd, E. B. H., and Mudd, S., 1933, Process of phagocytosis: Agreement between direct observation and deductions from theory, J. Gen. Physiol. 16:625.PubMedCrossRefGoogle Scholar
  40. Mudd, S., and Mudd, E. B. H., 1924, Certain interfacial tension relations and the behavior of bacteria in films, J. Exp. Med. 40:647.PubMedCrossRefGoogle Scholar
  41. Munoz, J., and Geister, R., 1950, Inhibition of phagocytosis by aureomycin, Proc. Soc. Exp. Biol. Med. 75:367.PubMedGoogle Scholar
  42. Neumann, A. W., van Oss, C. J., and Szekely, J., 1972, Thermodynamics of particle engulfment: Particle engulfment by solidifying melts and phagocytosis, Kolloid Z. Polym. 251:415.CrossRefGoogle Scholar
  43. Neumann, A. W., Good, R. J., Hope, C. J., and Sejpal, M., 1974a, An equation-of-state approach to determine surface tensions of low-energy solids from contact angles, J. Colloid Interface Sci. 49:291.CrossRefGoogle Scholar
  44. Neumann, A. W., Gillman, C. F., and van Oss, C. J., 1974b, Phagocytosis and surface free energies, Electroanal. Chem. Interfacial Electrochem. 49:393.CrossRefGoogle Scholar
  45. Neumann, A. W., Omenyi, S. N., and van Oss, C. J., 1979a, Negative Hamaker coefficients. I. Particle engulfment or rejection at solidification fronts, Colloid Polym. Sci. 257:413.CrossRefGoogle Scholar
  46. Neumann, A. W., Absolom, D. R., van Oss, C. J., and Zingg, W., 1979b, Surface thermodynamics of leukocyte and platelet adhesion to polymer surfaces, Cell Biophys. 1:79.PubMedGoogle Scholar
  47. Neumann, A. W., Hum, O. S., Francis, D. W., Zingg, W., and van Oss, C. J., 1980a, Kinetic and thermodynamic aspects of platelet adhesion, J. Biomed. Mater. Res. 14:499.PubMedCrossRefGoogle Scholar
  48. Neumann, A. W., Absolom, D. R., Francis, D. W., and van Oss, C. J., 1980b, Conversion tables of contact angles to surface tensions, Sep. Purif. Methods 9:69.CrossRefGoogle Scholar
  49. Neumann, A. W., Absolom, D. R., Francis, D. W., Zingg, W., and van Oss, C. J., 1982, Surface thermodynamics of phagocytic ingestion of non-opsonized bacteria by granulocytes in liquids of different surface tensions, Cell Biophys. 4:285.PubMedCrossRefGoogle Scholar
  50. Newsome, J., 1967, Phagocytosis by human neutrophils, Nature (London) 214:1092.CrossRefGoogle Scholar
  51. Nisonoff, A., Hopper, J. E., and Spring, S. B., 1975, The Antibody Molecule, pp. 96–97, Academic Press, New York.Google Scholar
  52. Omenyi, S. N., 1978, Attraction and repulsion of particles by solidifying melts, Ph.D. dissertation, University of Toronto.Google Scholar
  53. Omenyi, S. N., Snyder, R. S., van Oss, C. J., Absolom, D. R., and Neumann, A. W., 1980, Effects of zero van der Walls and zero electrostatic forces on droplet sedimentation, 2nd International Chemical Congress on the North American Continent, Abstracts ACS Meeting, Las Vegas.Google Scholar
  54. Reynolds, H. Y., Atkinson, J. P., Newball, H. H., and Frank, M. M., 1975, Receptors for immunoglobulin and complement on human alveolar macrophages, J. Immunol. 114:1813.PubMedGoogle Scholar
  55. Reynolds, H. Y., Merrill, W. M., Amento, E. P., and Nagel, G. P., 1978, Immunoglobulin A in secretions in human from the lower respiratory tract, in: Secretory Immunity and Infection (J. R. McGhee, J. Mestecky, and J. L. Babb, eds.), pp. 533–564, Plenum Press, New York.Google Scholar
  56. Saba, T. M., 1975, Aspecific opsonins, Int. Convoc. Immunol. 4:489.Google Scholar
  57. Seaman, G. V. F., and Brooks, D. E., 1979, Analytical cell electrophoresis, in: Electrokinetic Separation Methods (P. G. Rhigetti, C. J. van Oss, and J. W. Vanderhoff, eds.), pp. 95–110, Elsevier, Amsterdam.Google Scholar
  58. Smith, R. P., Omenyi, S. N., and Neumann, A. W., 1980, Dimensional analysis of behaviour of small particles at solidification fronts, 54th Colloid Surf. Sci. Symp., Lehigh University, Bethlehem, Pa.Google Scholar
  59. Spelt, J. K., 1980, Surface tension measurements of biological cells using the freezing front technique, M.Sc. thesis, University of Toronto.Google Scholar
  60. Spelt, J. K., Absolom, D. R., Neumann, A. W., van Oss, C. J., and Zingg, W., 1980, Surface tension and wettability studies of human erythrocytes using the freezing front technique, 54th Colloid Surf. Sci. Symp., Lehigh, Pa.Google Scholar
  61. Stendahl, O., Magnusson, K. E., Tagesson, C., Cunningham, R., and Edebo, L. B., 1973, Influence of hyperimmune immunoglobulin G on the physicochemical properties of the surface of Salmonella typhimurium 395 MS in relation to their interaction with phagocytic cells, Infect. Immun. 7:573.PubMedGoogle Scholar
  62. Stendahl, O., Tagesson, C., and Edebo, M., 1973, Partition of Salmonella typhimurium in a twopolymer aqueous phase system in relation to liability to phagocytosis, Infect. Immun. 8:36.PubMedGoogle Scholar
  63. Stendahl, O., Tagesson, C., Magnusson, K. E., and Edebo, L. B., 1977, Physicochemical consequences of opsonization of Salmonella typhimurium with hyperimmune IgG and complement, Immunology 32:11.PubMedGoogle Scholar
  64. Stinson, M. W., and van Oss, C. J., 1971, Immunoglobulins as specific opsonins. II. The influence of specific and aspecific immunoglobulins on the in vitro phagocytosis of noncapsulated, capsulated, and decapsulated bacteria by human neutrophils, J. Reticuloendothelial Soc. 9:503.Google Scholar
  65. Symoens, J., 1977, Levaucisole, an antianergic chemotherapeutic agent: an overview, in: Control of Neoplasia by Modulation of the Immune System (M. A. Chirigos, ed.), pp. 1–24, Raven Press, New York.Google Scholar
  66. Tan, J. S., Watanakunakorn, C., and Phair, J. P., 1971, A modified assay of neutrophil function: Use of Lysostaphin to differentiate defective phagocytosis from impaired intracellular killing, J. Lab. Clin. Med. 78:316.PubMedGoogle Scholar
  67. Thrasher, S. G., Yoshida, T., van Oss, C. J., Cohen, S., and Rose, N. R., 1973, Alteration of macrophage interfacial tension by supernatants of antigen-activated lymphocyte cultures, J. Immunol. 110:321.PubMedGoogle Scholar
  68. Valentine, R. C., and Green, N. M., 1967, Electron microscopy of an antibody-hapten complex, J. Mol. Biol. 27:615.PubMedCrossRefGoogle Scholar
  69. van Oss, C. J., 1971, Influence of glucose levels on the in vitro phagocytosis of bacteria by human neutrophils, Infect. Immun. 4:54.PubMedGoogle Scholar
  70. van Oss, C. J., 1975, Influence of the size and shape of molecules on their electrophoretic mobility, Sep. Purif. Methods 4:167.CrossRefGoogle Scholar
  71. van Oss, C. J., 1978, Phagocytosis as a surface phenomenon, Annu. Rev. Microbiol. 32:19.PubMedCrossRefGoogle Scholar
  72. van Oss, C. J., 1979a, The immunoglobulins, in: Principles of Immunology (N. R. Rose, F. Milgrom, and C. J. van Oss, eds.), Macmillan Co., New York.Google Scholar
  73. van Oss, C. J., 1979b, Electrokinetic separation methods, Sep. Purif. Methods 8:119.CrossRefGoogle Scholar
  74. van Oss, C. J., and Fike, R. M., 1979, Analytical cell electrophoresis, in: Electrokinetic Separation Methods (P. G. Rhigetti, C. J. van Oss, and J. W. Vanderhoff, eds.), pp. 111–120, Elsevier, AmsterdamGoogle Scholar
  75. van Oss, C. J., and Gillman, C. F., 1972a, Phagocytosis as a surface phenomenon. I. Contact angles and phagocytosis of non-opsonized bacteria, J. Reticuloendothelial Soc. 12:283.Google Scholar
  76. van Oss, C. J., and Gillman, C. F., 1972b, Phagocytosis as a surface phenomenon. II. Contact angles and phagocytosis of encapsulated bacteria before and after opsonization by specific antiserum and complement, J. Reticuloendothelial Soc. 12:497.Google Scholar
  77. van Oss, C. J., and Gillman, C. F., 1973, Phagocytosis as a surface phenomenon. III. Influence of C1423 on the contact angle and on the phagocytosis of sensitized encapsulated bacteria, Immunol. Commun. 2:415.PubMedGoogle Scholar
  78. van Oss, C. J., and Gillman, C. F., 1975, Phagocytosis and immunity, Int. Convoc. Immunol. 4:505.Google Scholar
  79. van Oss, C. J., and Mohn, J. F., 1970, Scanning electron microscopy of red cell agglutination, Vox Sang. 19:432.PubMedCrossRefGoogle Scholar
  80. van Oss, C. J., and Stinson, M. W., 1970, Immunoglobulins as aspecific opsonins. I. The influence of polyclonal and monoclonal immunoglobulins on the in vitro phagocytosis of latex particles and staphylococci by human neutrophils, J. Reticuloendothelial Soc. 8:397.Google Scholar
  81. van Oss, C. J., Good, R. J., and Neumann, A. W., 1971, The connection of interfacial free energies and surface potentials with phagocytosis and cellular adhesiveness, Electroanal. Chem. Interfacial Electrochem. 37:387.Google Scholar
  82. van Oss, C. J., Gillman, C. F., and Good, R. J., 1972a, The influence of the shape of phagocytes on their adhesiveness, Immunol. Commun. 1:627.PubMedGoogle Scholar
  83. van Oss, C J., Rose, N. R., Cohen, S., Thrasher, S. C., and Gillman, C. F., 1972b, Alteration of the interfacial tension of phagocytes by the ingestion of mycobacteria and latex particles, Annu. Meet. Am. Soc. Microbiol. Abstr. p. 896.Google Scholar
  84. van Oss, C J., Good, R. J., and Neumann, A. W., 1972c, The connection of interfacial free energies and surface potentials with phagocytosis and cellular adhesiveness, J. Electroanal. Chem. 37:387.CrossRefGoogle Scholar
  85. van Oss, C J., Woeppel, M. S., and Marquart, S. E., 1973, Immunoglobulins as aspecific opsonins. III. The opsonizing power of fragments of polyclonal and monoclonal immunoglobulin G, J. Reticuloendothelial Soc. 13:221.Google Scholar
  86. van Oss, C. J., Gillman, C. F., and Neumann, A. W., 1974, Phagocytosis as a surface phenomenon. IV. The minimum size and composition of antigen-antibody complexes that can become phagocytized, Immunol. Commun. 3:77.PubMedGoogle Scholar
  87. van Oss, C J., Gillman, C. F., and Neumann, A. W., 1975, Phagocytic Engulfment and Cell Adhesiveness, Dekker, New York.Google Scholar
  88. van Oss, C J., Gillman, C. F., and Singer, J. M., 1976, The influence of particulate carriers and of mineral oil in adjuvant on the antibody response in rabbits to human gamma globulin, Immunol. Commun. 5:181.PubMedGoogle Scholar
  89. van Oss, C. J., Mohn, J. F., and Cunningham, R. J., 1978, Influence of various physiocochemical factors on hemagglutination, Vox Sang. 34:351.PubMedCrossRefGoogle Scholar
  90. van Oss, C J., Omenyi, S. N., and Neumann, A. W., 1979a, Negative Hamaker coefficients. II. Phase separation of polymer solutions, Colloid Polym. Sci. 257:737.CrossRefGoogle Scholar
  91. van Oss, C J., Absolom, D. R., and Neumann, A. W., 1979b, Repulsive van der Waals forces. II. The mechanism of hydrophobic chromatography, Sep. Sci. Technol. 14:305.CrossRefGoogle Scholar
  92. van Oss, C J., Absolom, D. R., Grossberg, A. L., and Neumann, A. W., 1979c, Repulsive van der Waals forces. I. Complete dissociation of antigen-antibody complexes by means of negative van der Waals forces, Immunol. Commun. 8:11.PubMedGoogle Scholar
  93. van Oss, C. J., Bernstein, J. M., Park, B. H., Cianciola, L. J., and Genco, R. J., 1979d, Physicochemical aspects of phagocytosis and of some phagocytic disorders, Int. Convoc. Immunol. 6:311.Google Scholar
  94. van Oss, C. J., Absolom, D. R., and Neumann, A. W., 1980a, Applications of net repulsive van der Waals forces between different particles, macromolecules or cells in liquids, Colloid Surf. 1:45.CrossRefGoogle Scholar
  95. van Oss, C. J., Absolom, D. R., Neumann, A. W., and Zingg, W., 1980b, Determination of surface tensions of proteins. I. Surface tensions of native serum proteins in aqueous media, 2nd International Chemical Congress on the North American Continent, Abstracts ACS Meeting, Las Vegas.Google Scholar
  96. van Oss, C J., Neumann, A. W., Good, R. J., and Absolom, D. R., 1980c, The influence of extremely small as well as repulsive van der Waals forces on cell interactions, in: Bioelectrochemistry: Ions, Surfaces and Membranes (M. Blank, ed.), Adv. Chem. Ser. 188:107, Academic Press, New York.Google Scholar
  97. van Oss, C. J., Beckers, D., Engelfriet, C. P., Heimerhorst, F. M., Bruyns, E. C., Absolom, D. R., and Neumann, A. W., 1980d, Elution of blood group antibodies from blood cells by means of repulsive van der Waals forces, 2nd International Chemical Congress on the North American Continent, Abstracts ACS Meeting, Las VegasGoogle Scholar
  98. van Schaik, M. L. J., Weening, R. S., Voetman, A., and Roos, D., 1975, Phagocytosis and killing of S. aureus by human granulocytes, Ann. Rep. Karl Landsteiner Found., Cntrl. Lab. Netherlands Red Cross Blood Transfusion Service, Amsterdam, pp. 59-61.Google Scholar
  99. Vernon-Roberts, B., 1972, The Macrophage, pp. 150–151, Cambridge University Press, London.Google Scholar
  100. White, J. G., 1968, Fine structural alterations induced in platelets or adenosine diphosphate, Blood 31:604-622.PubMedGoogle Scholar
  101. Weening, R. S., Roos, D., and van Schaik, M. L. J., 1979, Defective initiation of the metabolic stimulation in phagocytizing granulocytes, in: Inborn Errors of Immunity and Phagocytosis (F. Gittler, J. W. T. Seakins, and R. A. Harkness, eds.), p. 291, University Park Press, Baltimore.Google Scholar
  102. Yamada, K. M., and Olden, K., 1978, Fibronectins—Adhesive glycoproteins of cell surface and blood, Nature (London) 275:179.CrossRefGoogle Scholar
  103. Yoshida, T., Janeway, C. A., and Paul, W. E., 1972, Activity of migration inhibitory factor in the absence of antigen, J. Immunol. 109:201.PubMedGoogle Scholar
  104. Zingg, W., Absolom, D. R., Neumann, A. W., Francis, D. W., and van Oss, C. J., 1981, Platelet phagocytosis as a model for the study of forces involved in platelet adhesion, Abstr. 2nd Eur. Conf. Biomaterials, Gothenburg, Sweden.Google Scholar
  105. Zisman, W. A., 1963, Influence of constitution on adhesion, Ind. Eng. Chem. 55:18.CrossRefGoogle Scholar
  106. Zisman, W. A., 1964, Relation of equilibrium contact angle to liquid and solid constitution, Adv. Chem. Ser. 43:1.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Carel J. van Oss
    • 1
  • Darryl R. Absolom
    • 2
    • 3
  • A. Wilhelm Neumann
    • 3
  1. 1.Immunochemistry Laboratory, Departments of Microbiology and Chemical EngineeringState University of New YorkBuffaloUSA
  2. 2.Immunochemistry Laboratory, Department of MicrobiologyState University of New YorkBuffaloUSA
  3. 3.Research Institute, The Hospital for Sick Children, Toronto, and Department of Mechanical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations