Intracellular Mechanisms of Killing

  • Nadia Nogueira
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 12)


One of the principal physiologic functions of “professional” phagocytic cells (neutrophils, eosinophils, and mononuclear phagocytes) is to ingest and destroy microorganisms. Mononuclear phagocytes, however, may also provide a favorable environment for the survival and multiplication of a variety of intracellular pathogens, including many obligate intracellular parasites.


Visceral Leishmaniasis Respiratory Burst Chronic Granulomatous Disease Mononuclear Phagocyte Toxoplasma Gondii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badwey, J. A., and Karnovsky, M. L., 1980, Active oxygen species and the functions of phagocytic leukocytes, Annu. Rev. Biochein. 49: 695.CrossRefGoogle Scholar
  2. Boveris, A., Sies, H., Martino, E. E., DoCampo, R., Turrens, J. F., and Stoppani, A. D. M., Intracellular Mechanisms of Killing 1980, Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi, Biochem. J. 188: 643.Google Scholar
  3. Buchmuller, Y., and Mauel, J., 1981, Studies on the mechanism of macrophage activation: Possible involvement of oxygen metabolites in killing of Leishmania enriettii by activated mouse macrophages, J. Reticuloendothel. Soc. 29: 181.PubMedGoogle Scholar
  4. Byrne, G. I., and Faubion, C. L., 1982, Lymphokine-mediated microbistatic mechanisms restrict Chlamydia psittaci growth in macrophages J. Immunol. 128:469.Google Scholar
  5. Cline, J. J., 1970, Drug potentiation of macrophage function, Infect. Immun. 2: 601.PubMedGoogle Scholar
  6. Davis, W. C., Huber, H., Douglas, S. D., and Fudenberg, H. H., 1968, A defect in circulating mononuclear phagocytes in chronic granulomatous disease of childhood, J. Immunol. 101: 1093.PubMedGoogle Scholar
  7. Ebert, F., Enriquez, G. L., and Muhlpfordt, H., 1976, Electron microscopic studies of the phagocytosis of Leishmania donovani by hamster peritoneal macrophages and its lysosomal activity in vitro, Behr. Inst. Mitt. 60: 65.Google Scholar
  8. Haidaris, C. G., and Bonventre, P. F., 1981, Elimination of Leishmania donovani amastigotes by activated macrophages Infect. Immun. 33:918.Google Scholar
  9. Haidaris, C. G., and Bonventre, P. F., 1982, A role for oxygen-dependent mechanisms in killing of Leishmania donovani tissue forms by activated macrophages J. Immunol. 129:850.Google Scholar
  10. Haurani, F. I., Meyer, A., and O’Brien, R., 1973, Production of transferrin by the macrophage, J. Recituloendothel. Soc. 14: 309.Google Scholar
  11. Huddleson, I. F., and Stahl, W. H., 1942, Catalase activity of the species of Brucella as a criterion of virulence Univ. Mich. Agric. Exp. Sta. Tech. Bull. 182:57.Google Scholar
  12. Johnston, R. B., Jr., 1978, Oxygen metabolism and the microbicidal activity of macrophages, Fed. Proc. 37: 2759.PubMedGoogle Scholar
  13. Johnston, R. B., Jr., Godzik, C. A., and Cohn, Z. A., 1978, Increased superoxide anion production by immunologically activated and chemically elicited macrophages J. Exp. Med. 148:115.Google Scholar
  14. Jones, T., and Hirsch, J., 1972, The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites, J. Exp. Med. 136: 1173.PubMedCrossRefGoogle Scholar
  15. Keithly, J. S., 1976, Infectivity of Leishmania donovani amastigotes and promastogotes and promastigotes for golden hamsters J. Protozool. 23:244.Google Scholar
  16. Klebanoff, S. J., 1980, Oxygen intermediates and the microbicidal events, in Mononuclear Phagocytes: Functional Aspects(R. van Furth, ed.), p. 1105, Martinus Nijhoff, The Hague.Google Scholar
  17. Knox, R., Meadow, P. M., and Worssan, R. H., 1956, The relationship between the catalase activity, hydrogen peroxidase sensitivity, and isoniazid resistance of mycobacteria Am. Rev. Tuberc. Pulm. Dis. 73:726.Google Scholar
  18. Lehrer, R. I., 1975, The fungicidal mechanisms of human monocytes. I. Evidence for myeloperoxidase-linked and myeloperoxidase-independent candidacidal mechanisms J. Clin. Invest. 55:338.Google Scholar
  19. Lehrer, R. I., Szklarek, D., Selsted, M. E., Fleischmann, J., 1981, Increased content of microbicidal cationic peptides in rabbit alveolar macrophages elicited by complete Freund adjuvant Infect. Immun. 33:775.Google Scholar
  20. Locksley, R. M., Wilson, C. B., and Klebanoff, S. J., 1982, Role of endogenous and acquired peroxidase in the toxoplasmacidal activity of mutine and human mononuclear phagocytes, J. Clin. Invest. (in press).Google Scholar
  21. Murray, H. W., 1982, Cell-mediated immune response in experimental visceral leishmaniasis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes J. Immunol. 129:351.Google Scholar
  22. Murray, H., 1981, Interaction of Leishmania with a macrophage cell line. Correlation between intracellular killing and the generation of oxygen intermediates,. 1. Exp. Med. 153: 1690.CrossRefGoogle Scholar
  23. Murray, H. W., and Cohn, Z. A., 1979, Macrophage oxygen-dependent antimicrobial activity, I. Susceptibility to Toxoplasma gondii to oxygen intermediates, J. Exp. Med. 150: 938.PubMedCrossRefGoogle Scholar
  24. Murray, H. W., and Cohn, Z. A., 1980, Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation, J. Exp. Med. 150: 950.CrossRefGoogle Scholar
  25. Murray, H. W., Juangbhanich, C. W., Nathan, C. F., and Cohn, Z. A., 1979, Macrophages oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates, J. Exp. Med. 150: 950PubMedCrossRefGoogle Scholar
  26. Murray, H. W., Nathan, C. F., and Cohn, Z. A., 1980, Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers of oxygen intermediates, J. Exp. Med. 152: 1610.PubMedCrossRefGoogle Scholar
  27. Nakagawara, A., Nathan, C. F., and Cohn, Z. A., 1981, Hydrogen peroxide metabolism in human monocytes during differentiation in vitro, J. Clin. Invest. 68: 1243.PubMedCrossRefGoogle Scholar
  28. Nakagawara, A., DeSantis, N. M., Nogueira, N., and Nathan, C. F., 1982, Lymphokines enhance the capacity of human monocytes to secrete reactive oxygen intermediates, J. Clin. Invest. 70: 1042–1048.PubMedCrossRefGoogle Scholar
  29. Nathan, C. F., and Nakagawara, A., 1982, Role of oxygen intermediates in macrophage killing of intracellular pathogens: A review, in: Self-Defense Mechanisms. Role of Macrophages, A Naito Foundation Symposium ( D. Mizuno, Z. A., Cohn, K. Takeya, and N. Ishida, eds.), p. 279, University of Tokyo Press-Elsevier Biomedical Press, Tokyo.Google Scholar
  30. Nathan, C. F., and Root, R. K., 1977, Hydrogen peroxide release from mouse peritoneal macrophages. Dependence on sequential activation and triggering, J. Exp. Med. 146: 1648.PubMedCrossRefGoogle Scholar
  31. Nathan, C. F., Karnovsky, M. L., and David, J. R., 1971, Alterations of macrophage functions by mediators from lymphocytes, J. Exp. Med. 133: 1356.PubMedCrossRefGoogle Scholar
  32. Nathan, C. F., Nogueira, N., Juangbhanich, C., Ellis, J., and Cohn, Z. A., 1979, Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi, J. Exp. Med. 149: 1056.PubMedCrossRefGoogle Scholar
  33. Nogueira, N., and Cohn, Z. A., 1976, Trypanosoma cruzi: Mechanisms of entry and intracellular fate in mammalian cells, J. Exp. Med. 143: 1402.Google Scholar
  34. Nogueira, N., and Cohn, Z. A., 1978, Trypanosoma cruzi, in vitro induction of macrophage microbicidal activity, J. Exp. Med. 148: 288.Google Scholar
  35. Nogueira, N., Gordon, S., and Cohn, Z., 1979, Trypanosoma cruzi: Modification of macrophage function during infection, J. Exp. Med. 146: 157.Google Scholar
  36. Nogueira, N., Chaplan, S., and Cohn, Z. A., 1980, Trypanosoma cruzi: Factors modifying ingestion and fate of blood form trypomastigotes, J. Exp. Med. 152: 447.Google Scholar
  37. Nogueira, N., Klebanoff, S., and Cohn, Z. A., 1982a, Trypanosoma cruzi: Sensitization to macrophage killing by eosmophii peroxidase, J. Immunol. 128: 1705.Google Scholar
  38. Nogueira, N., Chaplan, S., Reesink, M., Tydings, J., and Cohn, Z. A., 1982b, Trypanosoma cruzi: Induction of microbicidal activity in human mononuclear phagocytes, J. Immunol. 128: 2142.Google Scholar
  39. Pearson, R. D., and Steigbigel, R. T., 1981, Phagocytosis and killing of the protozoan Leishmania donovani by human polymorphonuclear leukocytes, J. Immunol. 127: 1438.PubMedGoogle Scholar
  40. Pearson, R. D., Harcus, J. L., Symes, P. H., Romito, R., and Donowitz, G. R., 1982, Failure of the phagocytic oxidative response to protect human monocyte-derived macrophages from infection by Leishmania dunuvani, J. Irnmurtol. 129: 128.Google Scholar
  41. Ramsey, P.G., Martin, T., Chi, E., and Klebanoff, S. J., 1982, Arming of mononuclear Intracellular Mechanisms of Killing phagocytes by eosinophil peroxidase bound to Staphylococcus aureus, J. Immunol. 128: 415.PubMedGoogle Scholar
  42. Reiss, M., and Roos, D., 1978, Differences in oxygen metabolism of phagocytosing monocytes and neutrophils, J. Clin. Invest. 61: 480.PubMedCrossRefGoogle Scholar
  43. Rockenmacher, M., 1949, Relationship of catalase activity to virulence in Pasteurella pestis, Proc. Soc. Exp. Biol. Med. 71: 99.PubMedGoogle Scholar
  44. Sagone, A. L., Jr., King, G. W., and Metz, E. N., 1976, A comparison of the metabolic response to phagocytosis in human granulocytes and monocytes, J. Clin. Invest. 57: 1352.PubMedCrossRefGoogle Scholar
  45. Sasada, M., and Johnston, R. B., Jr., 1980, Macrophage microbicidal activity. Correlation between phagocytosis associated oxidative metabolism and the killing of Candida by macrophages, J. Exp. Med. 152: 85.PubMedCrossRefGoogle Scholar
  46. Tanaka, Y., Kiyotaki, C., Tanowitz, H., and Bloom, B., 1982, Reconstitution of a variant macrophage cell line defective in oxygen metabolism with a H2O2-generating system, Proc. Natl. Acad. Sci. USA 579: 2584.CrossRefGoogle Scholar
  47. Tomioka, H., and Saito, H., 1980, Hydrogen-peroxide releasing function of chemically elicited and immunologically activated macrophages: Differential response to wheat germ and Concanavalin A, Infect. Immun. 29: 469.PubMedGoogle Scholar
  48. Walker, L., and Lowrie, D. B., 1981, Killing of Mycobacterium microti by immunologically activated macrophages,Nature (Loud.) 293: 69.Google Scholar
  49. Wilson, C. B., Tsai, V., and Remington, J. S., 1980, Failure to trigger the oxidative metabolic burst by normal macrophages. Possible mechanism for survival of intracellular pathogens, J. Exp. Med. 151: 328.PubMedCrossRefGoogle Scholar
  50. Yong, E. C., Klebanoff, S. J., and Kuo, C.-C., 1982, Toxic effect of human polymorphonuclear leukocytes on Chlamydia trachomatis, Infect. Immun. 37: 422.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Nadia Nogueira
    • 1
  1. 1.Department of Cellular Physiology and ImmunologyThe Rockefeller UniversityNew YorkUSA

Personalised recommendations