Cellular Immunity to Malaria and Babesia Parasites: A Personal Viewpoint

  • Anthony C. Allison
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 12)


It has long been recognized that falciparum malaria takes a different course in persons living where the disease is endemic, when repeated infection is initiated while they are still infants, and in nonimmune persons. Indeed, Plehn (1902) used the term relative immunity to describe the situation in Cameroon Africans. The epidemiology of malaria in Gambians, described by McGregor et al. (1956), is representative of the disease in many endemic areas, although the intensity of transmission and the age at which immunity is acquired vary from one location to another. The most severe disease is seen in young children between 6 months and 5 years of age. Relative immunity is first reflected by reduced symptoms, after which parasitemias fall. By school age, children living in endemic areas show only occasional, low parasitemias despite frequent bites by infected mosquitoes. Nevertheless, after as short a period as 6 months abroad, or after elimination of parasites by chemotherapy, severe malaria may again occur (Maegraith, 1974).


Malaria Parasite Human Erythrocyte Severe Malaria Cellular Immunity Respiratory Burst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, A. C., 1954e, The distribution of the sickle-cell trait in East Africa and elsewhere, and its apparent relationship to the incidence of subtertian malaria, Trans. Soc. Trop. Med. Hyg. 48: 312.Google Scholar
  2. Allison, A. C., 1954b, Protection by the sickle-cell trait against subtertian malarial infection, Br. Med. J. 1: 290.PubMedGoogle Scholar
  3. Allison, A. C., 1954c, Notes on sickle-cell polymorphism, Ann. Hum. Genet. 13: 39Google Scholar
  4. Allison, A. C., 1955, Danger of vitamin K to newborn, Lancet 1: 669.Google Scholar
  5. Allison, A. C., 1960, Glucose-6-phosphate dehydrogenase deficiency in red blood cells of East Africans, Nature (Lond.) 185: 531.Google Scholar
  6. Allison, A. C., 1963, Inherited factors in blood conferring resistance to protozoa, in: Immu-nity to Protozoa ( P. C. C. Garnham, A. E. Pierce, and I. Roitt, eds.), p. 109, Blackwell Scientific, Oxford.Google Scholar
  7. Allison, A. C., and Burn, G. P., 1955, Enzyme activity as a function of age in the human erythrocyte, Br. J. Haematol. 1: 291.PubMedGoogle Scholar
  8. Allison, A. C., and Clyde, D. F., 1961, Malaria in African children with deficient erythrocyte glucose-6-phosphate dehydrogenase, Br. Med. J. 1: 1345.Google Scholar
  9. Allison, A. C., and Eugui, E. M., 1982, A radical interpretation of immunity to malaria parasites, Lancet 2: 1431.PubMedGoogle Scholar
  10. Allison, A. C., Ikin, E. W., Mourant, A. E., and Raper, A. B., 1952, Blood groups in some East African tribes, J. R. Anthrop. Inst. 82: 55.Google Scholar
  11. Allison, A. C., Moore, E. and Sharman, I. M., 1956, Haemolysis and haemoglobinuria in Vitamin E deficient rats after injections of vitamin K substitutes, Brit. J. Haematol. 2: 197.Google Scholar
  12. Allison, A. C., Charles, L. S., and McGregor, I. A., 1961, Erythrocyte glucose-6-phosphate dehydrogenase deficiency in West Africa, Nature (Lond.) 190: 1198.Google Scholar
  13. Avila, E. M., Holdsworth, G., Sasaki, N., Jackson, R. L., and Harmony. J. A. K., 1982, Apoprotein E suppresses phytohemagglutinin-activated phospholipid turnover in peripheral blood mononuclear cells, J. Biol. Chem. 257: 5900.PubMedGoogle Scholar
  14. Badwey, J. A., and Karnovsky, M. L., 1980, Active oxygen species and the function of phagocyte leukocytes, Annu. Rev. Biochem. 49: 695;PubMedGoogle Scholar
  15. Baehner, R. L., Nathan, D. G., Castle, W. B., 1971, Oxidant injury of Caucasian glucose-6phosphate dehydrogenase-deficient red blood cells by phagocytosing leucocytes during infection, J. Clin. Invest. 50: 2466.PubMedGoogle Scholar
  16. Bartoz, G., Tannert, C., Fried, R., Leyko, W., 1978, Superoxide dismutase activity decreases during erythrocyte aging, Experientia 34: 1464.Google Scholar
  17. Basu, S. K., Ho, Y. K., Brown, M. S., Bilheimer, D. W., Anderson, R. G. W., and Goldstein, J. L., 1982, Biochemical and genetic studies of the apoprotein E secreted by mouse macrophages and human monocytes, J. Biol. Chem. 257: 9788.Google Scholar
  18. Beutler, E., Dem, R. J., and Flanagan, C. L., 1955, Effect of sickle-cell trait on resistance to malaria, Br. Med. J. 1: 1189.PubMedGoogle Scholar
  19. Bielsky, N., 1983, A comparison of the reactivities of H02 and OZ with compounds of biological interest, in: Third International Conference on Superoxide and Superoxide Dismutase (in press).Google Scholar
  20. Bienzle, V., Lucas, A. O., Ayeni, O., and Luzzatto, L., 1972, Glucose-6-phosphate dehydrogenase deficiency and malaria, Lancet 1: 107.PubMedGoogle Scholar
  21. Brenner, S., and Allison, A. C., 1953, Catalase inhibition: A possible mechanism for the production of Heinz bodies in erythrocytes, Experientia 9: 381.PubMedGoogle Scholar
  22. Brewer, G. J., and Coan, C. C., 1969, Interaction of red cell ATP levels and malaria, and the treatment of malaria with hyperoxia, Mil. Med. 134: 1056.PubMedGoogle Scholar
  23. Brown, I. N., Allison, A. C., and Taylor, R. B., 1968, Plasmodium berghei infections in thymectomized rats, Nature (Lond.) 219: 292.Google Scholar
  24. Brown, K. N., and Hills, L. A., 1981, Erythrocyte destruction and protective immunity to malaria: enhancement of the immune response by phenylhydrazine treatment, Tropenmed. Parasitol. 32: 67.PubMedGoogle Scholar
  25. Carson, P. E., Flanagan, C. L., Ickes, C. E., and Alving, A. S., 1956, Enzymatic deficiency in primaquine-sensitive erythrocytes, Science 124: 4814.Google Scholar
  26. Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N. and Williamson, B., 1975, An endotoxin-induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. U.S.A. 72: 3666.PubMedGoogle Scholar
  27. Caughey, W. S., Wallace, W. J., and Kawanishi, S., 1983, Mechanism for superoxide produc-tion in autoxidation reactions of hemoglobins and myoglobins, in: Third International Conference on Superoxide and Superoxide Dismutase (in press).Google Scholar
  28. Chiu, D., Vichinsky, E., Yee, M., Kletman, K., and Lubin, B., 1982, Peroxidation, vitamin E and sickle-cell anemia, Ann. N. Y. Acad. Sci. 393: 323.Google Scholar
  29. Clark, I. A., and Allison, A. C., 1974, Babesia microti and Plasmodium berghei yoelii infections in nude mice, Nature (Lond.) 252: 328.Google Scholar
  30. Clark, I. A., and Hunt, N. H., 1983, Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria, Infect. Immun. 39: 1.PubMedGoogle Scholar
  31. Clark, I. A., Allison, A. C., and Cox, F. E. G., 1976, Protection of mice against Babesia and Plasmodium with BCG, Nature (Lond.) 259: 309.Google Scholar
  32. Clark, I. A., Wills, E. J., Richmond, J. E., and Allison, A. C., 1977b, Suppression of babesiosis in BCG-infected mice and its correlation with tumour inhibition, Infect. Immun. 17: 430.PubMedGoogle Scholar
  33. Clark. I. A., Virelizier. J. L., Carswell, E. A., and Wood, P. A., 1981, Possible importance of macrophage-derived mediators in acute malaria, Infect. Immun. 32: 1058.Google Scholar
  34. Clark, I. A., Cos, F. E. G. and Allison, A. C., 1977a, Protection of mice against Babesia spp. and Plasmodium spp. with killed Corynebacterium parvum, Parasitology. 74: 9.PubMedGoogle Scholar
  35. Clark, I. A., Cowden, W. B., and Butcher, G. A., 1983, Free oxygen radical generators as antimalarial drugs, Lancet 1: 234.PubMedGoogle Scholar
  36. Cohen, G., 1975, Unusual defense machanisms against H2 0, cytotoxicity in erythrocytes deficient in glucose-6-phosphate dehydrogenase or tocopherol, in: Erythrocyte Structure and Function ( G. S. Brewer, ed.) p. 685, Alan R. Liss, New York.Google Scholar
  37. Cohen, S., McGregor, I. A., and Carrington, S., 1961, Gamma globulin and acquired immunity to human malaria, Nature, (Lond.) 192: 733.Google Scholar
  38. Cohen, S., Butcher, G. A. and Crandall, R. B., 1970, Action of antimalarial antibody in vitro, Nature (Lond.) 223: 368.Google Scholar
  39. De Simone, J., Adams, J. G., and Shaeffer, J., 1977, Evidence for rapid loss of newly synthesized haemoglobin S molecules in sickle-cell anemia and sickle-cell trait, Br. J. Haematol. 35: 373.Google Scholar
  40. Diggs, C. L., and Osier, A. G., 1969, Humoral immunity in rodent malaria. II. Inhibition of parasitemia by serum antibody, J. Immunol. 102: 203.Google Scholar
  41. Eaton, J. W., Eckman, J. R., Berger, E., and Jacob, H. S., 1976, Suppression of malaria infection by oxidant-sensitive host erythrocytes, Nature (Lond.) 264: 758.Google Scholar
  42. Etkin, N. L., and Eaton, J. W., 1975, Malaria-induced erythrocyte oxidant sensitivity, in: Erythrocyte Structure and Function ( G. J. Brewer, ed.), p. 219, Alan R. Liss, New York.Google Scholar
  43. Fee, J. A., 1982, Is superoxide important in oxygen poisoning? Trends Biochem. Sci. 7: 84.Google Scholar
  44. Fee, J. A., and Teitelbaum, D. D., 1972, Evidence that superoxide dismutase plays a role in protecting red blood cells against peroxidative hemolysis, Biochem. Biophys. Res. Commune. 49: 150.Google Scholar
  45. Fee, J. A., Bergamini, R., and Briggs, R. G., 1975, Observations on the mechanism of the oxygen/dialuric acid-induced hemolysis of vitamin E-deficient rat red blood cells and the protective roles of catalase and superoxide dismutase, Arch. Biochem. Biophys. 169: 160.PubMedGoogle Scholar
  46. Ferrante, A., Allison, A. C., and Hirumi, H., 1982, Polyamine oxidase-mediated killing of African trypanosomes, Parasite Immunol. 4: 349.PubMedGoogle Scholar
  47. Ferrante, A.. Rzepczyk, C. M., and Allison, A. C., 1983, Polyamine oxidase mediates in-traerythrocytic death of Plasmodium falciparum, Trans. R. Soc Trop. Med. Hyg. (in press)Google Scholar
  48. Fitch, C. S., 1983, Mode of action of antimalarial drugs, in: Malaria and the Red Cell (Ciba Foundation Symposium 94), p. 222, Pitman, London.Google Scholar
  49. Flohé, L., 1978, Glutathione peroxidase: Fact and fiction, in: Oxygen Free Radicals and Tissue Damage (Ciba Foundation Symposium 65), p. 95, Excerpta Medica, Amsterdam.Google Scholar
  50. Fridovitch, I., 1975, Superoxide dismutases, Annu. Rev. Biochem. 44: 147.Google Scholar
  51. Friedman, M. J., 1978, Erythrocytic mechanism of sickle cell resistance to malaria, Proc. Natl. Acad. Sci. USA, 75: 1994.Google Scholar
  52. Friedman, M. J., 1979, Oxidant damage mediates variant red cell resistance to malaria, Nature (Lond.) 280: 245.Google Scholar
  53. Friedman, M. J., 1981, Hemoglobin and the red cell membrane: Increased binding of polymorphic hemoglobins and measurement of free radicals in the membrane, in: The Red Cell ( G. J. Brewer, ed.), p. 519, Alan R. Liss, New York.Google Scholar
  54. Friedman, M. J., 1983, Expression of inherited resistance to malaria in culture, in: Malaria and the Red Cell (Ciba Foundation Symposium 94), p. 196, Pitman, London.Google Scholar
  55. Friedman, M. J., Roth, G. F., Nagel, R. L., and Trager, W., 1979, The role of hemoglobins C, S and N BALT in the inhibition of malaria parasite development in vitro, Am. J. Trop. Med. Hyg. 28: 777.Google Scholar
  56. Gilles, H. M., Fletcher, K. A., Hendrickse, R. G., Lindner, R., Reddy, S., and Allan, N., 1967, Glucose-6-phosphate dehydrogenase deficiency, sickling and malaria in African children in South-Western Nigeria, Lancet 1: 138.PubMedGoogle Scholar
  57. Goldberg, B., Stern, A., and Peisach, J., 1976, The mechanism of superoxide anion genera- tion by the interaction of phenylhydrazine with hemoglobin, J. Biol. Chem. 251: 3045.PubMedGoogle Scholar
  58. Goumard, P., VuDac, N., Maurois, P., and Camus, D., 1982, Influence of malaria on a preexisting antibody response to heterologous antigens, Ann. Immunol. 133D: 313.Google Scholar
  59. Grun, J. I., and Weidanz, W. P., 1981, Immunity to Plasmodium chabaudi adami in the B cell deficient mouse, Nature (Lond.) 290: 143.Google Scholar
  60. Haidaris, C. G., Haynes, J. D., Meltzer, M. S., and Allison, A. C., 1983, Serum containing tumor necrosis factor is cytotoxic for the human malaria parasite, Plasmodium falciparum, Infect. Immun. (in press).Google Scholar
  61. Hsu, K. -H. L., Hiramoto, R. N., and Ghanta, V. K., 1982, Immunosuppressive effect of mouse serum lipoproteins. II. In vivo studies, J. Immunol. 128: 2107.Google Scholar
  62. Hui, D. Y., Noel, J. G., and Harmony, J. A. K., 1981, Binding of plasma low density lipoproteins to erythrocytes, Biochem. Biophys. Acta 664: 53.Google Scholar
  63. Jain, S. K., and Hochstein, P., 1979, Generation of superoxide radicals by hydrazine and its role in phenylhydrazine-induced hemolytic anemia, Biochim. Biophys. Acta 586: 128.Google Scholar
  64. Jayawardena, A. N., Targett, G. A. T., Carter, R. L., Leuchars, E., and Davies, A. J. S., The immunological response of CBA mice to P. yoelii, 1. Gereral characteristics The effects of T-cell deprivation and reconstitution with thymus grafts, Immunology 32: 849.Google Scholar
  65. Jensen, J. B., Boland, M. T., and Akood, M., 1982, Induction of crisis forms in cultured Plasmodium falciparum with human immune serum from Sudan, Science 216: 1230.PubMedGoogle Scholar
  66. Johnson, R. B., 1982, Enhancement of phagocytosis-associated metabolism as a manifestation of macrophage activation, in Lymphokines (E. Pick, ed.), Vol. 3, p. 33, Academic Press, New York.Google Scholar
  67. Kar, S. K., Roelants, G. E., Mayor-Withey, K. S., and Pearson, T. W., 1981, Immunosuppression in trypanosome-infected mice. 6. Comparison of immune responses of defferent lymphoid organs, Eur. J. Immunol. 7: 100.Google Scholar
  68. Klipstein, F. A., and Ranney, H. N., 1960, Electrophoretic components of the hemoglobin of red cell membranes, J. Clin. Invest. 39: 1984.Google Scholar
  69. Langhorne, J. Butcher, G. A., Mitchell, G. H. and Cohen, S., 1979, Preliminary investigations on the role of the spleen in immunity to Plasmodium knowlesi malaria, in: The Role of the Spleen in the Immunology of Parasitic Diseases, ( G. Torrigiani, ed.) 205, Schwabe, Basel.Google Scholar
  70. Livingstone, F. B., 1967, Abnormal Hemoglobins in Human Populations, Aldine, ChicagoGoogle Scholar
  71. Lynch, R. E. and Fridovitch, I., 1978, Permeation of the erythrocyte stroma by superoxide radical, J. Biol. Chem. 253: 4967.Google Scholar
  72. Maegraith, B. G., 1974, Malaria, in: Medicine in the Tropics ( A. W. Woodruff, ed.), p. 27, Churchill, Livingstone, London.Google Scholar
  73. Makimura, S., Brinkmann, V., Mossmann, H. and Fischer, H. 1982, Chemiluminescence response of peritoneal macrophages to parasitized erythrocytes and lysed erythrocytes from Plasmodium berghei-infected mice, Infect. Immun. 37: 800.PubMedGoogle Scholar
  74. Mannel, D. N., Meltzer, M. S., and Mergenhagen, S. E., 1980, Gereration and characterization of lipopolysaccharide-induced and serum-derived cytotoxic factor for tumor cells, Infect. Immun. 28: 204.PubMedGoogle Scholar
  75. Marklund, S. L., Grankvist, K., and Taljedal, I. B.,1983, Oxy-radicals in the toxicity of cellular toxins, in: Third International Conference on Superoxide and Superoxide Dismutase (in press).Google Scholar
  76. Marks, P. A., Johnson, A. B. and Hirschberg, E., 1958, Effect of age on the enzyme activity in erythrocytes, Proc. Natl. Acad. Sci., U.S.A. 44: 529.PubMedGoogle Scholar
  77. Martin, S. K., Miller, L. H., Ailing, D., Okoye, V. C., Esan, G. J. F., Osunkoya, B. O., and Deane, M., 1979, Severe malaria and glucose-6-phosphate dehydrogenase deficiency: A reappraisal of the malaria G-6-PD hypothesis, Lancet 1: 524.PubMedGoogle Scholar
  78. McGregor, I. A., Gilles, H. M., Walters, J. H., Davies, J. H., and Pearson, F. A., 1956, Effect of heave and repeated infections on Gambian infants and children; effects of erythrocyte parasitization, Br. Med. J. 2: 686.PubMedGoogle Scholar
  79. Mezick, J. A., Settlemire, C. T., Brierly, G. P., Barefield, K. P., Jensen, W. N., and Cornwell, D. G., 1970, Erythrocyte membrane interactions with menadione and the mechanisms of menadione-induced hemolysis, Biochem. Biophys. Acta 219: 361.Google Scholar
  80. Morgan, D. M. L., 1980, Polyamine oxidases, in: Polyamines in Biomedical Research (J. M. Gaugas, ed.), p. 285, Wiley, Chichester.Google Scholar
  81. Morgan, D. M. L., Ferluga, J., and Allison, A. C., 1980, Polyamine oxidase and macrophage function, in: Polyamines in Biomedical Research (J. M. Gaugas, ed.), p. 303, Wiley, Chichester.Google Scholar
  82. Morgan, D. M. L., Christensen, J. R., and Allison, A. C., 1981, Polyamine oxidase and the killing of intracellular parasites, Biochem. Soc. Trans. 9: 563.Google Scholar
  83. Motulsky, A. G., 1960, Metabolic polymorphisms and the role of infectious deseases in human evolution, Hum. Biol. 32: 28.PubMedGoogle Scholar
  84. Necheles, T. F., 1974, The clinical spectrum of glutathione peroxidase deficiency, in: Glutathione ( L. Flohé, H. C. Benohr, H. Sies, H. D. Waller, and A. Wendel, eds.), p. 173, Thieme, Stuttgart.Google Scholar
  85. Neta, P., and Dorfman, L. M. 1968, Pulse radiolysis studies. VIII. Rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solution, Adv. Chem. Ser. 81: 225.Google Scholar
  86. Nussenzweig, R. S., 1967, Increased nonspecific resistance to malaria produced by administration of killed Corynebacterium parvum, Exp. Parasitol. 21:224.Google Scholar
  87. Ochoa, S., 1981, Molecular mechanisms of control of protein biosynthesis, Eur. J. Cell Biol. 26: 212.PubMedGoogle Scholar
  88. Pasvol, G., Weatherall, D. J., and Wilson, R. J. M., 1978, Cellular mechanism for the protec-tive effect of haemoglobin S. against P. falciparum malaria, Nature (Lond.) 274: 702Google Scholar
  89. Plehn, A., 1902, Die Malaria der Afrikanischen Negerbevolkerung, besonders mit Besug auf die Immunitatsfrage, p. 43, Fischer, Jena.Google Scholar
  90. Potocnjak, P., Yoshida, N., Nussenzweig, R. S., and Nussenzweig, V., 1980. Monovalent fragments (Fab) of monoclonal antibodies to sporozoite surface antigens (Pb 44) protect mice against malarial infection, J. Exp. Med. 151: 1504.PubMedGoogle Scholar
  91. Rachmilewitz, E. A., Lubin, B. H., and Shohet, S. B., 1976, Lipid membrane peroxidation in B-thalassemia major, Blood 47: 495.PubMedGoogle Scholar
  92. Rank, R. G., Weidanz, W. P., 1976, Nonsterilising immunity in avian malaria: An antibody-independent phenomenon, Proc. Soc. Exp. Biol. Med. 151: 257.PubMedGoogle Scholar
  93. Rifkin, M. R., 1978, Identification of trypanocidal factor in normal human serum-high-density lipoprotein, Proc. Natl. Acad. Sci. USA 75: 3450.PubMedGoogle Scholar
  94. Rigdon, R. H., Micks, D. W., Breslin, D., 1950, Effect of phenylhydrazine hydrochloride on Plamodium knowlesi infection in the monkey, Am. J. Hyg. 52: 308.PubMedGoogle Scholar
  95. Roberts, D. W., and Weidanz, W. P., 1979, T-cell immunity in malaria in the (i-cell dificient mouse, Am. J. Trop. Med. Hyg. 28: 1.PubMedGoogle Scholar
  96. Roth, E. F., Raventos-Suarez, C., Rinaldi, A., and Nagel, R. L., 1983, Glucose-6-phosphate dehydrogenase deficiency inhibits in vivo growth of Plasmodium falciparum, Proc. Natl. Acad. Sci. USA 80: 298.PubMedGoogle Scholar
  97. Rotilio, G., Fioretti, E., Falcioni, G., and Brunori, M., 1977, Generation of superoxide radical by heure proteins and its biological relevance, in: Superoxide and Superoxide Dismutases ( A. M. Michelson, J. M. McCord, and I. Fridovitch, eds.), p. 239, Academic Press, New York.Google Scholar
  98. Rzepczyk, C. M., and Clark, I. A., 1981, Demonstration of lipopolysaccharide-induced cytostatic effect on malarial parasites, Infect. Immune. 33: 343.Google Scholar
  99. Sawyer, D. T., and Valentine, J. S., 1981, How super is superoxide? Acc. Chem. Res. 14: 393.Google Scholar
  100. Schuh, J., Novgorodsky, A., and Haschemeyer, R. H., 1978, Inhibition of lymphocyte mitogenesis by autoxidized low-density lipoprotein, Biochem. Biophys. Res. Commun. 84: 763.PubMedGoogle Scholar
  101. Segal, A. W., and Allison, A. C., 1978, Oxygen consumption by stimulated human neutrophils, in: Oxygen Free Radicals and Tissue Damage (Ciba Foundation Symposium 65), p. 205, Excerpta Medica, Amsterdam.Google Scholar
  102. Segal, A. W., Jones, V. T. G., Webster, D., and Allison, A. C., 1978, Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease, Lancet 2: 446.PubMedGoogle Scholar
  103. Segal, A. W., Cross, A. R., Garcia, R. C., Borregaard, N., Valerius, N., Soothill, O. F., and Jones, V. T. G., 1983, Absence of cytochrome b-245 in chronic granulomatous disease: A multicenter European evaluation of its incidence and relevance, N. Engl. J. Med. 308: 245.PubMedGoogle Scholar
  104. Sergent, E., 1963, Latent infection and premunition. Some definitions of microbiology and immunology, in: Immunity to Protozoa ( P. C. C. Garnham, A. E. Pierce, and I. Roitt, eds.), p. 39, Blackwell Scientific, Oxford.Google Scholar
  105. Sipe, J. D., and Rosenstreich, D. L., 1981, Serum factors associated with inflammation, in: Cellular Functions in Immunity and Inflammation ( J. J. Oppenheim, D. L. Rosenstreich, and Potter, eds.), p. 115, Elsevier-North Holland, New York.Google Scholar
  106. Stechschulte, D. J., 1969, Effect of thymectomy in Plasmodium berghei infected rats, Proc. Soc. Exp. Biol. Med. 131: 748.PubMedGoogle Scholar
  107. Stocks, J., Offerman, G. L., Modell, C. B. and Dormandy, T. L., 1972, The susceptibility to autoxidation of human red cell lipids in health and disease, Br. J. Haematol. 23: 713.PubMedGoogle Scholar
  108. Taliaferro; W. H., and Taliaferro, L. G., 1944, The effect of immunity on the asexual reproduction of Plasmodium brasilianum, J. Infect. Dis. 75: 1.Google Scholar
  109. Tappel, A. L., 1975, Lipid peroxidation and fluorescent molecular damage to membranes, in: Pathobiology of Cell Membranes ( B. F. Trump and F. Arstila, Eds.), Vol. 1, p. 311, Academic Press, New York.Google Scholar
  110. Taverne, J., Dockrell, H. M., and Playfair, J. H. L., 1981, Endotoxin induced serum factor kills malarial parasites in vitro, Infect. Immun. 33: 83.PubMedGoogle Scholar
  111. Terry, R. J., and Hudson, K., 1982, Immunosupression in parasite infections, in: Immune Reactions to Parasites ( W. Frank, ed.), p. 125, G. Fischer, Stuttgart.Google Scholar
  112. Thomas. M. J., Mehl, K. S.. and Pryor, W. A., 1982, The role of superoxide in xanthine oxidase-induced autoxidation of linoleic acid, J. Biol. Chem. 257: 8343.Google Scholar
  113. Trager, W., and Jensen, J. B., 1976, Human malaria parasites in continuous culture, Science 193: 673.PubMedGoogle Scholar
  114. Trotta, R. J., Sulluvan, S. G., and Stern, A., 1982, Lipid peroxidation and haemoglobin deg- radation in red blood cells exposed to t-butylhydorperoxide, Biochem. J. 204: 405.PubMedGoogle Scholar
  115. Udeinya, I. J., Schmidt, J. A., Aikawa, M., Miller, L. H., and Green, I., 1981, Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells, Science 213: 555.PubMedGoogle Scholar
  116. Weatherall, D. S., and Clegg, J. B., 1981, The Thalassaemia Syndromes 3rd ed. Blackwell Scientific, Oxford.Google Scholar
  117. Weidanz, W. P., and Rank, R. G., 1975, Regional immunosuppression induced by Plasmodium berghei yoelii infection in mice, Infect. Immun. 11: 211.Google Scholar
  118. Weinbaum, F. I., Evans, C. B., and Tigelaar, R. E., 1976, Immunity to Plasmodium berghei yoelii in mice. 1. The course of infection in T-cell and B-cell-deficient mice, J. Immunol. 117: 1999.Google Scholar
  119. Weisgraber, K. H., and Mahley, R. W., 1978, Apoprotein (E-A-11) complex of human plasma lipoproteins. 1. Characterization of this mixed dusulfide and its identification in a high-density lipoprotein in subfraction, J. Biol. Chem. 253: 6281.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Anthony C. Allison
    • 1
  1. 1.Institute of Biological SciencesSyntex ResearchPalo AltoUSA

Personalised recommendations