• Marianne Fillenz


Ramon y Cajal’s neurohistological studies demonstrated that the nervous sys tem consists of an interlacing network of nerve cells with specialized contact areas between their processes. Although the specialized area of contact, the synapse, was recognized as being the site of transmission between nerve cells, nothing was known of the mechanism of this transmission. Scott1 in 1905 was the first to put forward a general theory of chemical transmission. He emphasized that the process of conduction to the synapse and the stimulation of the next cell were entirely different properties of the neuron. On the basis of histological resemblances between gland cells and nerve cells, he suggested that the latter are also secretory and that the arrival of the impulse at the synapse causes the discharge of a chemical substance. Furthermore, he wrote

Since the discharge means the using up of formed material, it must be an exhaustible process, and the process of complete recovery at the synapse must depend on the integrity of the connection of the synapse with the nucleus and cell body which are the original seats of formation of the material involved in the activity.


Tyrosine Hydroxylase Nerve Terminal Locus Coeruleus Small Vesicle Large Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scott, F. H., 1905, Brain 28:506–526.Google Scholar
  2. 2.
    Langley, J. N., 1901, J. Physiol. (Lond.) 27:237–256.Google Scholar
  3. 3.
    Elliott, T. R., 1905, J. Physiol. (Lond.) 32:401–467.Google Scholar
  4. 4.
    Katz, B., 1969, The Release of Neural Transmitter Substances. The Sherrington Lectures X , Liverpool University Press, Liverpool.Google Scholar
  5. 5.
    Eränkö, O., 1955, Acta Endocrinol. (Kbh.) 18:174–179.Google Scholar
  6. 6.
    Falck, B., Hillarp, N. A., Thieme, G., and Torp, A., 1962, J. Histochem. Cytochem. 10:348–354.Google Scholar
  7. 7.
    Jonsson, G., 1969, J. Histochem. Cytochem. 17:714–723.PubMedGoogle Scholar
  8. 8.
    von Euler, V. S., and Hillarp, N.-A., 1956, Nature 177:44–45.Google Scholar
  9. 9.
    Roth, R. H., Stjarne, L., Bloom, F. E., and Giarman, N. J., 1968, J. Pharmacol. Exp. Ther. 162:185–194.Google Scholar
  10. 10.
    Tranzer, J. P., 1972, Nature (New Biol.) 237:57–58.Google Scholar
  11. 11.
    Descarries, L., and Droz, B., 1970, J. Cell. Biol. 44:385–399.PubMedGoogle Scholar
  12. 12.
    Lagercrantz, H., Klein, R. L., and Stjarne, L., 1970, Life Sci. 9:639–650.Google Scholar
  13. 13.
    Bisby, M. A., 1971, D.Phil. Thesis, Oxford.Google Scholar
  14. 14.
    Lagercrantz, H., 1976, Neuroscience 1:81–92.PubMedGoogle Scholar
  15. 15.
    Tranzer, J. P., and Richards, J. G., 1976, J. Histochem. Cytochem. 24:1178–1193.PubMedGoogle Scholar
  16. 16.
    Lagercrantz, H., and Thureson-Klein, A., 1975, Histochemistry 43:173–183.PubMedGoogle Scholar
  17. 17.
    Klein, R. L., and Thureson-Klein, A., 1974, Fed. Proc. 33:2195–2206.Google Scholar
  18. 18.
    Klein, R. L., Kirksey, D. F., Rush, R. A., and Goldstein, M., 1977, J. Neurochem. 28:81–86.PubMedGoogle Scholar
  19. 19.
    Kirksey, D. F., Klein, R. L., Baggett, J. McC., and Gasparis, M. S., 1978, Neuroscience 2:621–634.Google Scholar
  20. 20.
    Wilson, S. P., Klein, R. L., Chang, K.-J., Gasparis, M. S., Viveros, O. H., and Yang, N. H., 1980, Nature 288:707–709.PubMedGoogle Scholar
  21. 21.
    Bisby, M. A., and Fillenz, M., 1971, J. Physiol. (Lond.) 215:163–179.Google Scholar
  22. 22.
    Thureson-Klein, A., Klein, R. L., and Stjarne, L., 1976, Neurosci. Abstr. 2.Google Scholar
  23. 23.
    Fillenz, M., 1971, Phil. Trans. R. Soc. [Biol.] 261:319–323.Google Scholar
  24. 24.
    Thureson-Klein, A., Stjarne, L., and Brundin, J., 1976, Neuroscience 1:333–337.PubMedGoogle Scholar
  25. 25.
    Thureson-Klein, A., Stjarne, L., and Brundin, J., 1976, 34th Ann. Proc. Electron Microscopy Soc. Amer. (G. W. Bailey, ed.), Miami Beach, Florida, pp. 108–109.Google Scholar
  26. 26.
    Bisby, M. A., Cripps, H., and Dearneley, D. P., 1971, J. Physiol. (Lond.) 214:13–14P.Google Scholar
  27. 27.
    Nelson, D. L., and Molinoff, P. B., 1976, J. Pharmacol. Exp. Ther. 198:112–113.PubMedGoogle Scholar
  28. 28.
    Basbaum, C. B., and Heuser, J. E., 1979, J. Cell Biol. 80:310–325.PubMedGoogle Scholar
  29. 29.
    Pollard, R. M., Fillenz, M., and Kelly, P., 1982, Neuroscience 7:1623–1629.PubMedGoogle Scholar
  30. 30.
    Kapeller, K., and Mayor, D., 1967, Proc. R. Soc. Lond. [Biol.] 167:282–292.Google Scholar
  31. 31.
    De Potter, N. P., Chubb, I. W., and De Schaepdryver, A. F., 1972, Arch. Int. Pharmacodyn. Ther. [Suppl.] 196:258–287.Google Scholar
  32. 32.
    Lagercrantz, H., Kirksey, D. F., and Klein, R. L., 1974, J. Neurochem. 23:769–773.PubMedGoogle Scholar
  33. 33.
    Yen, S. S., Klein, R. L., Chen Yen, S. H., and Thureson-Klein, A., 1976,J. Neurobiol. 7:11–22.PubMedGoogle Scholar
  34. 34.
    Klein, R. L., Thureson-Klein, A., Chen Yen, S. H., Baggett, J. McC., Gasparis, M. S., and Kirksey, D. F., 1979, J. Neurogiol. 10:291–307.Google Scholar
  35. 35.
    Yen, S. S., Klein, R. L., Chen Yen, S. H., 1973, J. Neurocytol. 2:1–12.PubMedGoogle Scholar
  36. 36.
    Lagercrantz, H., Fried, G., and Dahlin, J., 1975, Acta Physiol. Scand. 94:136–138.PubMedGoogle Scholar
  37. 37.
    Stjarne, L., 1972, Handbook of Experimental Pharmacology ,Volume 33 (H. Blaschko and E. Muscholl, eds.), pp. 231–261, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  38. 38.
    von Euler, V. S., 1980, Release and Uptake Functions in Adrenergic Nerve Granules. The S herrinton Lectures XV ,Liverpool University Press, Liverpool.Google Scholar
  39. 39.
    Klein, R. L., and Lagercrantz, H., 1971, Acta Physiol. Scand. 83:179–190.PubMedGoogle Scholar
  40. 40.
    Richards, J. G., and Da Prada, M., 1980, Histochemistry and Cell Biology of Autonomie Neurons, SIF Cells and Paraneurons (O. Eranko, S. Soinila and H. Paivarinta, eds.), Raven Press, New York, pp. 269–278.Google Scholar
  41. 41.
    Fried, G., Lagercrantz, H., and Hökfelt, T., 1978, Neuroscience 3:1271–1291.PubMedGoogle Scholar
  42. 42.
    Fried, G., 1980, Acta Physiol Scand. Suppl. 493:1–28.PubMedGoogle Scholar
  43. 43.
    von Euler, U. S., 1970, Bayer Symposium II (H. J. Schumann and G. Kroneberg, eds.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 144–159.Google Scholar
  44. 44.
    Fried, G., 1981, Acta Physiol. Scand. 112:41–46.PubMedGoogle Scholar
  45. 45.
    Bareis, D. L., and Slotkin, T. A., 1979, J. Neurochem. 32:345–351.PubMedGoogle Scholar
  46. 46.
    Fillenz, M., Howe, P. R. C., and West, D. P., 1976, J. Neurosci. 1:113–116.Google Scholar
  47. 47.
    West, D. P., and Fillenz, M., 1980, J. Neurochem. 35:1323–1328.PubMedGoogle Scholar
  48. 48.
    Fillenz, M., and Stanford, S. C., 1981, Br. J. Pharmacol. 73:401–404.PubMedGoogle Scholar
  49. 49.
    Gomez, J., and Fillenz, M., 1982, Neurochem. Int. 4:135–141.PubMedGoogle Scholar
  50. 50.
    Fried, G., Thureson-Klein, A., and Lagercrantz, H., 1981, Neuroscience 6:787–800.PubMedGoogle Scholar
  51. 51.
    Fillenz, M., and Pollard, R. M., 1976, Brain Res. 109:443–454.PubMedGoogle Scholar
  52. 52.
    Chubb, I. W., De Potter, W. P., and De Schaepdryver, A. F., 1970, Nature 228:1203–1204.PubMedGoogle Scholar
  53. 53.
    De Potter, W. P., and Chubb, I. W., 1977, Neuroscience 2:167–174.PubMedGoogle Scholar
  54. 54.
    Nelson, D. L., and Molinoff, P. B., 1976, J. Pharmacol. Exp. Ther. 196:346–359.PubMedGoogle Scholar
  55. 55.
    De Potter, W. P., and De Smet, F. H., 1980, Experientia 36:1282–1285.PubMedGoogle Scholar
  56. 56.
    Rush, R. A., Millar, T. J., Chubb, I. W., and Geffen, L. B., 1978, Catecholamines: Basic and Clinical Frontiers (E. Usdin, I. Kopin, and J. Barchas eds.), Pergamon Press, London, pp. 331–333.Google Scholar
  57. 57.
    Fillenz, M., and Howe, P. R. C., 1975, J. Neurochem. 24:683–688.PubMedGoogle Scholar
  58. 58.
    Coté, M. G., Palaic, D., and Panisset, J. C., 1970, Rev. Can. Biol. 29:111–114.PubMedGoogle Scholar
  59. 59.
    Hamilton, R. C., and Robinson, P. M., 1973, J. Neurocytol. 2:465–480.PubMedGoogle Scholar
  60. 60.
    Heuser, J., and Reese, T., 1973, J. Cell Biol. 57:315–344.PubMedGoogle Scholar
  61. 61.
    Fillenz, M., and West, D. P., 1976, Neurosci. Lett. 2:285–287.PubMedGoogle Scholar
  62. 62.
    Tomlinson, D., 1975, J. Physiol. (Lond.) 245:727–735.Google Scholar
  63. 63.
    Holtzmann, E., 1977, Neuroscience 2:327–356.Google Scholar
  64. 64.
    Fillenz, M., 1979, The Release of Catecholamines from Adrenergic Neurons (D. M. Paton, ed.), Pergamon Press, London, pp. 17–38.Google Scholar
  65. 65.
    Benedict, C. R., Fillenz, M., and Stanford, S. C., 1979, Br. J. Pharmacol. 66:521–524.PubMedGoogle Scholar
  66. 66.
    Fillenz, M., Stanford, S. C., and Benedict, C. R., 1978, Catecholamines: Basic and Clinical Frontiers (E. Usdin, I. Kopin, and J. Barchas, eds.), Pergamon Press, London, pp. 936–938.Google Scholar
  67. 67.
    Brimijoin, S., 1974, J. Neurochem. 22:347–353.PubMedGoogle Scholar
  68. 68.
    Stjarne, L., and Lischajko, F., 1966, Br. J. Pharmacol. 27:398–404.Google Scholar
  69. 69.
    Pickel, V. M., Joh, T. H., and Reis, D. J., 1976, J. Histochem. Cytochem. 24:792–806.PubMedGoogle Scholar
  70. 70.
    Laduron, P., and Belpaire, F., 1968, Nature 217:1155–1156.PubMedGoogle Scholar
  71. 71.
    Coyle, J. T., and Wooten, G. F., 1972, Brain Res. 44:701–705.PubMedGoogle Scholar
  72. 72.
    Oesch, F., Otten, V., and Thoenen, H., 1973, J. Neurochem. 20:1691–1706.PubMedGoogle Scholar
  73. 73.
    Fillenz, M., Gagnon, C., Stoeckel, K., and Thoenen, H., 1976, Brain Res. 114:293–304.PubMedGoogle Scholar
  74. 74.
    Brimijoin, S., 1975, J. Neurobiol. 6:379–394.PubMedGoogle Scholar
  75. 75.
    Brimijoin, S., and Heiland, L., 1976, Brain Res. 102:217–228.PubMedGoogle Scholar
  76. 76.
    Nagatsu, I., Kondo, Y., Kato, T., and Nagatsu, T., 1976, Brain Res. 116:277–285.PubMedGoogle Scholar
  77. 77.
    Livett, B. G., Geffen, L. B., and Austin, L., 1968, J. Neurochem. 15:931–939.PubMedGoogle Scholar
  78. 78.
    De Potter, W. P., and Chubb, I. W., 1971, Biochem. J. ,125:375–376.PubMedGoogle Scholar
  79. 79.
    Thoenen, H., Kettler, R., Burkard, W., and Saner, A., 1971, Naunyn Schmiedebergs Arch. Pharmakol. 270:146–160.PubMedGoogle Scholar
  80. 80.
    Thoenen, H., 1972, Biochem. Soc. Symp. 36:3–15.PubMedGoogle Scholar
  81. 81.
    Raine, A. E. G., and Chubb, I. W., 1977, Nature 267:265–267.PubMedGoogle Scholar
  82. 82.
    Otten, U., and Thoenen, H., 1976, Naunyn Schmiedebergs Arch. Pharmakol 292:153–159.Google Scholar
  83. 83.
    Reis, D. J., Joh, T. H., and Ross, R. A., 1975, J. Pharmacol. Exp. Ther. 193:775–784.PubMedGoogle Scholar
  84. 84.
    Joh, T. H., Ross, R. A., and Reis, D. J., 1976, Fed. Proc. 35:485.Google Scholar
  85. 85.
    Thoenen, H., and Oesch, F., 1973, New Concepts in Neurotransmitter Regulation (A. J. Mandell, ed.), Plenum Press, New York, pp. 33–51.Google Scholar
  86. 86.
    Reis, D. J., Ross, R. A., Pickel, V. M., and Joh, T. H., 1977, Neurotransmitter Function: Basic and Clinical Aspects (W. S. Fields, ed.), Symposia Specialists, Chicago, pp. 143–161.Google Scholar
  87. 87.
    Fredholm, B. B., Fried, G., and Hedqvist, P., 1981, Eur. J. Pharmacol. 79:233–243.Google Scholar
  88. 88.
    Smith, A. D., De Potter, W. P., Moerman, E. J., and De Schaepdryver, A. F., 1970, Tissue Cell 2:547–568.PubMedGoogle Scholar
  89. 89.
    Weinshilboum, R. M., Thoa, N. B., Johnson, D. G., Kopin, I. J., and Axelrod, J., 1971, Science 174:1349–1351.PubMedGoogle Scholar
  90. 90.
    Fillenz, M., and West, D. P., 1974, J. Neurochem. 23:411–416.PubMedGoogle Scholar
  91. 91.
    Brodde, O.-E., Hubermann, K., and Schumann, H. T., 1976, J. Neurochem. 27:433–438.PubMedGoogle Scholar
  92. 92.
    Lees, G. J., Geffen, L. B., and Rush, R. A., 1981, Neurosci. Lett. 22:115–118.PubMedGoogle Scholar
  93. 93.
    Geffen, L. B., Hunter, C., and Rush, R. A., 1969, J. Neurochem. 16:469–474.PubMedGoogle Scholar
  94. 94.
    Font, C., Araneda, S., Pujol, J. F., Jouvet, M., and Bobillier, P., 1980, Neurosci. Lett. [Suppl.] 5:SI92.Google Scholar
  95. 95.
    Weinshilboum, R., and Axelrod, J., 1971, Circ. Res. 28:307–315.PubMedGoogle Scholar
  96. 96.
    De Potter, W. P., Chank, C. P-H., De Smet, F., and De Schaepdryver, A. F., 1976, Neu roscience 1:523–529.Google Scholar
  97. 97.
    Greenfield, S. A., and Smith, A. D., 1979, Brain Res. 177:445–459.PubMedGoogle Scholar
  98. 98.
    Blakeìeytà. G. H., and Cunnane, T. C., 1979, J. Physiol. (Lond.) 296:85–96.Google Scholar
  99. 99.
    Raiteri, M., del Carmine, R., Bertollini, A., and Levi, G., 1977, Mol. Pharmacol. 13:746–758.PubMedGoogle Scholar
  100. 100.
    West, D. P., and Fillenz, M., 1981, J. Neurochem. 37:1052–1053.PubMedGoogle Scholar
  101. 101.
    De Potter, W. P., Chubb, I. W., Put, A., and De Schaepdryver, A. F., 1971, Arch. Int. Pharmacodyn. Ther. 193:191–197.PubMedGoogle Scholar
  102. 102.
    Langer, S. Z., 1979, The Release of Catecholamines from Adrenergic Neurons (D. M. Paton, ed.), Pergamon Press, London, pp. 59–85.Google Scholar
  103. 103.
    Lokhandwala, M. F., 1979, Life Sci. 24:1823–1832.PubMedGoogle Scholar
  104. 104.
    Arbilla, S., and Langer, S. Z., 1979, Naunyn Schmiedebergs Arch. Pharmacol. 306:161–168.PubMedGoogle Scholar
  105. 105.
    Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M., 1980, Nature 283:92–94.PubMedGoogle Scholar
  106. 106.
    De Langen, C. D. J., and Mulder, A. H., 1980, Brain Res. 185:399–408.PubMedGoogle Scholar
  107. 107.
    Hedqvist, P., 1976, Br. J. Pharmacol. 58:599–603.PubMedGoogle Scholar
  108. 108.
    Gothert, M., and Wehking, E., 1980, Experientia 36:239–240.PubMedGoogle Scholar
  109. 109.
    Reisine, T., 1981, Neuroscience 6:1471–1502.PubMedGoogle Scholar
  110. 110.
    Stanford, S. C., and Nutt, D., 1982, Neuroscience 7:1753–1757.PubMedGoogle Scholar
  111. 111.
    Salzman, P. M., and Roth, R. H., 1980, J. Pharmacol. Exp. Ther. 212:64–73.PubMedGoogle Scholar
  112. 112.
    Lewander, T., Joh, T. H., and Reis, D. J., 1977, J. Pharmacol. Exp. Ther. 200:523–534.PubMedGoogle Scholar
  113. 113.
    McRae Degueurce, A., 1980, Ph.D. Thesis, Lyon.Google Scholar
  114. 114.
    Dairman, W., and Udenfriend, S., 1970, Mol. Pharmacol. 6:350–356.PubMedGoogle Scholar
  115. 115.
    Boarder, M. R., and Fillenz, M., 1979, Biochem. Pharmacol. 28:1675–1677.PubMedGoogle Scholar
  116. 116.
    Abou-Donia, M. M., and Viveros, O. H., 1981, Proc. Nacl. Acad. Sci. U.S.A. 78:2703–2706.Google Scholar
  117. 117.
    Acheson, A. L., Zigmond, M. J., and Stricker, E. M., 1980, Science 207:537–540.PubMedGoogle Scholar
  118. 118.
    Zigmond, M. J., Acheson, A. L., Chiodo, L. A., and Strieker, E. M., 1981, Neurosci. Abstr. 7:149.Google Scholar
  119. 119.
    Costa, M., and Eränkö, O., 1974, Histochem. J. 6:35–53.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Marianne Fillenz
    • 1
  1. 1.University Laboratory of Physiology, OxfordOxfordEngland

Personalised recommendations