Transmitter Specificity in Neurons

  • Neville N. Osborne


For the past 10 years considerable thought has centered on the question of whether neurons can utilize more than one transmitter substance.1-6 This recent interest originated from biochemical studies on isolated invertebrate neu rons,3,7,8 and also from the development of specific immunofluorescent procedures to visualize transmitter-type molecules.6,9,10 Before this era, it was widely accepted that each neuron had the ability to synthesize, store, and release only one transmitter substance. This concept, referred to as Dale’s principle by Eccles,11 was based on a vast quantity of experimental data. Although neither Dale nor Eccles stated categorically that neurons have the capacity to produce and release only one transmitter substance, this was generally believed to be the case, as embodied in Dale’s principle. However, even before the present era of sophisticated methodology, this belief was constantly questioned. For example, in 1959, Burn and Rand12 suggested that acetylcholine was involved in certain forms of adrenergic transmission in order to explain several pharmacological inconsistencies from the traditional point of view. It was proposed that acetylcholine is present together with norepinephrine in adrenergic axons and forms an intermediate link between nerve impulses and the release of norepinephrine from the nerve terminal.13,14 Stimulation of sympathetic postganglionic nerves produces cholinergic contraction of newborn rabbit intestine but a predominantly adrenergic relaxation several days later.15


Sympathetic Neuron Superior Cervical Ganglion Postsynaptic Receptor Nonneuronal Cell Transmitter Specificity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bumstock, G., 1976, Neuroscience 1:239–248.CrossRefGoogle Scholar
  2. 2.
    Burnstock, G., 1978, Prog. Neurobiol. 11:205–222.PubMedCrossRefGoogle Scholar
  3. 3.
    Osborne, N. N., 1977, Nature 270:622–623.PubMedCrossRefGoogle Scholar
  4. 4.
    Osborne, N. N., 1979, Trends Neurosci. 2:73–75.CrossRefGoogle Scholar
  5. 5.
    Osborne, N. N., 1981, Neurochem. Int. 3:3–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Hökfelt, T., Lundberg, J. M., Schultzberg, M., Johansson, O., Ljungdahl, Å., and Rehfeld, J., 1980, Neural Peptides and Neuronal Communication (E. Costa and M. Trabuchhi, eds.), Raven Press, New York, pp. 1–23.Google Scholar
  7. 7.
    Brownstein, M. J., Snowedra, J. M., Axelrod, J., Zemen, G. H., and Carpenter, D. O., 1974, Proc. Natl. Acad. Sci. U.S.A. 75:5732–5736.Google Scholar
  8. 8.
    Hanley, M. R., Cottrell, G. A., Emson, P. C., and Fonnum, F., 1974, Nature (New Biol.) 251:631–633.CrossRefGoogle Scholar
  9. 9.
    Chan-Palay, V., Jonsson, G., and Palay, S. L., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:1582–1586.PubMedCrossRefGoogle Scholar
  10. 10.
    Hökfelt, T., Ljungdahl, H., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, E., Pernow, B., and Goldstein, M., 1978, Neuroscience 3:517–538.PubMedCrossRefGoogle Scholar
  11. 11.
    Eccles, J. D., 1957, The Physiology of Nerve Cells ,The Johns Hopkins University Press, Baltimore.Google Scholar
  12. 12.
    Burn, J. H., and Rand, M. J., 1959, Nature 184:163–165.CrossRefGoogle Scholar
  13. 13.
    Koelle, G. B., 1962, J. Pharm. Pharmacol. 14:65–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Burn, J. H., and Rand, M. J., 1965, Annu. Rev. Pharmacol. 5:163–182.CrossRefGoogle Scholar
  15. 15.
    Day, M. D., and Rand, M. J., 1961, Br. J. Pharm. Chem. 17:245–260.Google Scholar
  16. 16.
    Burn, J. H., 1968, Br. J. Pharm. Chem. 32:575–582.Google Scholar
  17. 17.
    Osborne, N. N., 1982, Trends. Volume 2 (S. Kalsner, ed.), Urban Schwarzenberg, Baltimore, Munich (in press).Google Scholar
  18. 18.
    Sakharov, D. A., 1974, J. Neural Transm. [Suppl.] 11:43–59.Google Scholar
  19. 19.
    Sakharov, D. A., 1976, Gastropoda Brain (J. Salanki, ed.), Akademiai Kiado, Budapest, pp. 27–40.Google Scholar
  20. 20.
    Sakharov, D. A., 1978, Advances in Pharmacology and Therapeutics ,Volume 8 (G. Olive, ed.), Pergamon Press, Oxford, pp. 275–283.Google Scholar
  21. 21.
    Knight, D. P., 1970, Tissue Cell 2:467–477.PubMedCrossRefGoogle Scholar
  22. 22.
    Lentz, T. L., 1968, Primitive Nervous Systems ,Yale University Press, New Haven.Google Scholar
  23. 23.
    Scharrer, B., 1976, Prog. Brain Res. 45:125–137.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Lague, P. H., Obata, K., Claude, P., Furshpan, E. J., and Potter, D. D., 1974, Proc. Natl. Acad. Sci. U.S.A. 71:3602–3606.PubMedCrossRefGoogle Scholar
  25. 25.
    Purves, R. D., Hill, C. E., Chamley, J., Mark, G. E., Fry, D. M., and Burnstock, G., 1974, Pfluegers Arch. 350:1–7.CrossRefGoogle Scholar
  26. 26.
    Patterson, P. H., and Chun, L. L. Y., 1977, Dev. Biol. 56:263–280.PubMedCrossRefGoogle Scholar
  27. 27.
    Burton, H., and Bunge, R. O., 1975, Brain Res. 97:157–162.PubMedCrossRefGoogle Scholar
  28. 28.
    Patterson, P. H., Reichardt, L. F., and Chun, L. L. Y., 1976, Cold Spring Harbor Symp. Quant. Biol. 40:389–397.PubMedCrossRefGoogle Scholar
  29. 29.
    Hill, C., Purves, R. D., Watanake, H., and Burnstock, G., 1976, Pfluegers Arch. 361:127–134.CrossRefGoogle Scholar
  30. 30.
    Furshpan, E. J., Macleish, P. R., O’Lague, P. H., and Potter, D. D., 1976, Proc. Natl. Acad. Sci. U.S.A. 73:4225–4229.PubMedCrossRefGoogle Scholar
  31. 31.
    Reichardt, L. F., and Patterson, P. H., 1977, Nature 270:147–151.PubMedCrossRefGoogle Scholar
  32. 32.
    Hill, C. E., and Hendry, I. A., 1977, Neuroscience 2:741–749.PubMedCrossRefGoogle Scholar
  33. 33.
    Ross, D., Johnson, M., and Bunge, R., 1977, Nature 267:536–539.PubMedCrossRefGoogle Scholar
  34. 34.
    Chun, L. L. Y., and Patterson, P. H., 1977, J. Cell Biol. 75:694–704.PubMedCrossRefGoogle Scholar
  35. 35.
    Le Douarin, N. M., Renaud, D., Teillet, M. A., and Le Douarin, G. H., 1975, Proc. Natl. Acad. Sci. U.S.A. 72:728–732.PubMedCrossRefGoogle Scholar
  36. 36.
    Le Douarin, N. M., Smith, J., Teillet, M.-A., Le Lievre, C. S., and Ziller, C., 1980, Trends Neurosci. 3:39–42.CrossRefGoogle Scholar
  37. 37.
    Mudge, A. W., 1981, Nature 292:764–766.PubMedCrossRefGoogle Scholar
  38. 38.
    Livett, B. G., Dean, D. M., Whelan, L. G., Udenfriend, S., and Rossier, J., 1981, Nature 289:317–319.PubMedCrossRefGoogle Scholar
  39. 39.
    Osborne, N. N., 1974, Microchemical Analysis of Nervous Tissue ,Pergamon Press, Oxford.Google Scholar
  40. 40.
    Osborne, N. N., 1980, Trends Pharmacol. 1:290–292.CrossRefGoogle Scholar
  41. 41.
    McCaman, R. E., and McCaman, M. W., 1978, Brain Res. 141:347–352.PubMedCrossRefGoogle Scholar
  42. 42.
    Farnham, P. J., Navak, R. A., and McAdoo, D. J., 1978, J. Neurochem. 20:1173–1176.CrossRefGoogle Scholar
  43. 43.
    Emson, P. C., and Fonnum, F., 1972, J. Neurochem. 22:1079–1088.CrossRefGoogle Scholar
  44. 44.
    Lewis, R. V., Stern, A. S., Rossier, J., Stein, S., and Udenfriend, S., 1979, Biochem. Biophys. Res. Commun. 89:822–829.PubMedCrossRefGoogle Scholar
  45. 45.
    Viveros, O. H., Diliberto, E. J., Jr., Hazun, E., and Chang, K.-J., 1979, Mol. Pharmacol. 16:1101–1108.PubMedGoogle Scholar
  46. 46.
    Dowdall, M. J., Boyne, A. F., and Whittaker, V. P., 1974, Biochem. J. 140:1–12.PubMedGoogle Scholar
  47. 47.
    Wilson, S. P., Klein, R. L., Chang, K.-J., Gasparis, M. S., Viveros, H., and Yang, W.-H., 1980, Nature 288:707–709.PubMedCrossRefGoogle Scholar
  48. 48.
    Pelletier, G., Steinbusch, H. W. M., and Verhofstad, A. A. J., 1981, Nature 293:71–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Coons, A. H., 1958, Gen ral Cytochemical Methods (J. F. Danielli, ed.), Academic Press, New York, pp. 399–422.Google Scholar
  50. 50.
    Kerkut, G. A., Sedden, C. L., and Walker, R. J., 1967, Comp. Biochem. Physiol. 23:159–162.PubMedCrossRefGoogle Scholar
  51. 51.
    Welsh, J. H., and Williams, L. D., 1970, J. Comp. Neurol. 138:103–116.PubMedCrossRefGoogle Scholar
  52. 52.
    Osborne, N. N., and Dockray, G. J., 1982, Neurochem. Int. 4:175–180.PubMedCrossRefGoogle Scholar
  53. 53.
    Hökfelt, T., Rehfeld, J. F., Skirboll, L., Ivemark, B., Goldstein, M., and Markey, K., 1980, Nature 285:476–478PubMedCrossRefGoogle Scholar
  54. 54.
    Osborne, N. N., Cuello, A. C., and Dockray, G. J., 1982, Science 216:409–411.PubMedCrossRefGoogle Scholar
  55. 55.
    Schultzberg, M., Hökfelt, T., Terenius, L., Elfvin, L. G., Lundberg, J. M., Brandt, J., Eide, R., and Goldstein, M., 1978, Neuroscience 3:1169–1186.PubMedCrossRefGoogle Scholar
  56. 56.
    Schultzberg, M., Hökfelt, T., Terenius, L., Elfvin, L. G., Lundberg, J. M., Brandt, J., Eide, R., and Goldstein, M., 1979, Neuroscience 4:249–270.PubMedCrossRefGoogle Scholar
  57. 57.
    Hökfelt, T., Elfvin, L. G., Eide, R., Schultzberg, M., Goldstein, M., and Lufe, R., 1977, Proc. Natl. Acad. Sci. U.S.A. 74:3587–3591.PubMedCrossRefGoogle Scholar
  58. 58.
    Lundberg, J. M., Hökfelt, T., Schultzberg, M., Uvnas-Wallenstein, K., Kohler, L., and Said, S., 1979, Neuroscience 4:1539–1559.PubMedCrossRefGoogle Scholar
  59. 59.
    Johansson, O., Hökfelt, T., Pernow, B., Jeffcoate, S. L., White, N., Steinbusch, H. W. M., Verhofstad, A. A. J., Emson, P. C., and Spindel, E., 1981, Neuroscience 6:1857–1882.PubMedCrossRefGoogle Scholar
  60. 60.
    Nilaver, G., Zimmerman, E. A., Defendini, R., Liotta, A. S., Krieger, D. T., and Brownstein, M. J., 1979, J. Cell. Biol. 81:50–58.PubMedCrossRefGoogle Scholar
  61. 61.
    Schultzberg, M., Hökfelt, T., Nilsson, G., Terenius, L., Rehfeld, J. F., Brown, M., Eide, R., Goldstein, M., and Said, S., 1980, Neuroscience 5:689–744.PubMedCrossRefGoogle Scholar
  62. 62.
    Hökfelt, T., Lundberg, J. M., Schultzberg, M., Johansson, O., Skirboll, L., Ånggård, A., Fredholm, B., Hamberger, B., Pernow, B., Rehfeld, J., and Goldstein, M., 1980, Proc. R. Soc. Lond. [Biol.] 210:63–77.CrossRefGoogle Scholar
  63. 63.
    Probert, L., De Mey, J., and Polak, J. M., 1981, Nature 294:470–471.PubMedCrossRefGoogle Scholar
  64. 64.
    Chubb, I. A., 1977, Synapses (G. A. Cottrell and P. N. E. Usherwood, eds.), Blackie, Glasgow, pp. 264–290.Google Scholar
  65. 65.
    Smith, A. D., de Potter, V. P., Moerman, E. J., and Schaepdryver, A. F., 1970, Tissue Cell 2:547–568.PubMedCrossRefGoogle Scholar
  66. 66.
    Dray, A., 1979, Neuroscience 4:1407–1439.PubMedCrossRefGoogle Scholar
  67. 67.
    Greenfield, S., Cheramy, A., Leviel, V., and Glovinski, J., 1980, Nature 284:355–357.PubMedCrossRefGoogle Scholar
  68. 68.
    Osborne, N. N., 1982, Co-Transmission (A. C. Cuello, ed.) Macmillan Press, London pp. 207–222.Google Scholar
  69. 69.
    Cottrell, G. A., 1977, Neuroscience 2:1–18.PubMedCrossRefGoogle Scholar
  70. 70.
    Singh, I., 1964, Arch. Int. Physiol. Biochem. 72:843–851.CrossRefGoogle Scholar
  71. 71.
    Singh, I., and Singh, S. I., 1966, Arch. Int. Physiol. Biochem 74:365–373.CrossRefGoogle Scholar
  72. 72.
    Burnstock, G., 1975, J. Exp. Zool. 194:103–133.PubMedCrossRefGoogle Scholar
  73. 73.
    Fox, J. H., and Kenney, W. N., 1978, Annu. Rev. Biochem. 47:655–686.PubMedCrossRefGoogle Scholar
  74. 74.
    Mcllwain, H., 1973, Cerebral Nervous System (E. Genazzani and H. Herken, ed.), Springer-Verlag, Berlin, pp. 1–11.Google Scholar
  75. 75.
    Silinski, E. M., 1980, Br. J. Pharma. Chem. 71:191–194.Google Scholar
  76. 76.
    Möhler, H., Richards, J. G., and Wu, J.-Y., 1981, Proc. Natl. Acad. Sci. 78:1935–1938.PubMedCrossRefGoogle Scholar
  77. 77.
    Fogle, J. A., and Neufeld, A. M., 1979, Invest. Ophthalmol. Vis. Sci. 18:1212–1215.PubMedGoogle Scholar
  78. 78.
    Paton, W. D. M., and Vizi, E. S., 1969, Br. J. Pharm. Chem. 35:10–28.CrossRefGoogle Scholar
  79. 79.
    Vizi, E. A., 1973, Br. J. Pharm. Chem. 47:765–777.CrossRefGoogle Scholar
  80. 80.
    Neill, J. D., Plotsky, P. M., and de Greep, W. J., 1979, Trends Neurosci. 2:60–63.CrossRefGoogle Scholar
  81. 81.
    Saavedra, J. M., Brownstein, M. J., Carpenter, D. O., and Axelrod, J., 1974, Science 185:364–365.PubMedCrossRefGoogle Scholar
  82. 82.
    McCaman, R. T., Weinreich, D., and Borys, H., 1973, J. Neurochem. 21:473–476.PubMedCrossRefGoogle Scholar
  83. 83.
    Borys, H. K., Weinreich, D., and McCaman, R. E., 1973, J. Neurochem. 21:1349–1351.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Neville N. Osborne
    • 1
  1. 1.Nuffield Laboratory of OphthalmologyUniversity of OxfordOxfordEngland

Personalised recommendations