The Thermoenergetics of Communication and Social Interactions among Mongolian Gerbils

  • Del Thiessen


The Mongolian gerbil (Meriones unguiculatus) (Figure 1) has provided us with a behavioral window through which general biological problems can be seen. What began as studies of ventral scent marking have provoked a broader interest in the bioenergetics of communication:

The bioenergetic needs of an organism must ultimately stipulate the structure and function of a message system. An organism runs on energy, is constructed to search out and acquire energy, judiciously guards an energy balance of debits and credits, and interestingly, uses energy to communicate needs about energy. With this in mind, it is apparent that the cellular metabolism which underlies all life processes is also the root of communication. (Thiessen, 1983)


Physiological Psychology Harderian Material Hair Growth Mongolian Gerbil Nictitate Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, J. R. Huddling by rat pups: Group behavioral mechanisms of temperature regulation and energy conservation. Journal of Comparative and Physiological Psychology, 1978, 92,(2), 231–245.PubMedCrossRefGoogle Scholar
  2. Alcock, J. Animal behavior: An evolutionary approach. Sunderland, Mass.: Sinauer Associates, 1979.Google Scholar
  3. Ali, M. S. Sensory ecology. New York: Plenum Press, 1977.Google Scholar
  4. Barnett, S. A. Modern ethology: The science of animal behavior. New York: Oxford University Press, 1981.Google Scholar
  5. Bittner, J. J., & Watson, C. J. The possible association between porphyrins and cancer in mice. Cancer Research, 1946, 6, 337–343.PubMedGoogle Scholar
  6. Blass, E. M., Hall, W. G., & Teicher, M. H. The ontogeny of suckling and ingestive behaviors. In J. M. Sprague & A. N. Epstein (Eds.), Progress in psychobiology and physiological psychology. New York: Academic Press, 1979, pp. 243–299.Google Scholar
  7. Block, M. L., Volpe, L. C., & Hayes, M. J. Saliva as a chemical cue in the development of social behavior. Science, 1981, 211(4486), 1062–1064.PubMedCrossRefGoogle Scholar
  8. Bolles, R. Grooming behavior in the rat. Journal of Comparative and Physiological Psychology, 1960, 53, 306–310.PubMedCrossRefGoogle Scholar
  9. Borchelt, P. L. Development of dustbathing components in Bobwhite and Japanese quail. Developmental Psychobiology, 1977, 10, 97–103.PubMedCrossRefGoogle Scholar
  10. Born, G. Die Nasenhöhlen and der Tränen-Nasengage der anmioten Wirbeltiere. Gergenbaur’s Morphologische, 1883, 8, 188–232.Google Scholar
  11. Brooksbank, B. W. L., Wilson, D. A. A., & Clough, G. The in-vivo uptake of (3H) androsta-4, 16-dien-3-one in tissues of the adult male rat. Journal of Endocrinology, 1973, 57, i–ii.CrossRefGoogle Scholar
  12. Bubenik, G. A., Brown, G. M., & Grota, L. J. Immunohistochemical localization of melatonin in the rat Harderian gland. Journal of Histochemistry and Cytochemistry, 1976, 24, 1173–1177.PubMedCrossRefGoogle Scholar
  13. Bubenik, G. A., Purtill, R. A., Brown, G. M., & Grota, L. J. Melatonin in the retina and the Harderian gland: Ontogeny diurnal variations and melatonin treatment. Experimental Eye Research, 1978, 27, 323–333.PubMedCrossRefGoogle Scholar
  14. Burtt, E. H., Jr. The behavioral significance of color. New York: Garland STMP Press, 1979.Google Scholar
  15. Cardinali, D. P., & Wurtman, R. J. Hydroxyindole-O-Methyltransferase in rat pineal, retina, and Harderian gland. Endocrinology, 1972, 91, 247–252.PubMedCrossRefGoogle Scholar
  16. Cohn, S. A. Histochemical observations on the Harderian gland of the albino mouse. Journal of Histochemistry, 1955, 3, 342–358.Google Scholar
  17. Davis, F. A. The anatomy and histology of the eye and orbit of the rabbit. Transcripts of the American Ophthamological Society, 1929, 27, 401–441.Google Scholar
  18. DeGhett, V. J. Developmental changes in the rate of ultrasonic vocalization in the Mongolian gerbil. Developmental Psychobiology, 1974, 7, 267–273.CrossRefGoogle Scholar
  19. Derrien, E., & Turchini, J. Sur acculumation d’une porphyrine dans la glande de Harder des rongeurs du genre Mus et sur son mode d’excretion. Compte Rendu des Séances de la Société de Biologie et de ses Filiales, 1924, 91, 637–639.Google Scholar
  20. Ebling, F. J., Ebling, E., Randall, V., & Skinner, J. The effects of hypophysectomy and of bovine growth hormone on the responses to testosterone of prostate, preputial, Harderian and lachrymal glands and of brown adipose tissue in the rat. Journal of Endocrinology, 1975, 66, 401–406. (a)PubMedCrossRefGoogle Scholar
  21. Elbing, F. J., Ebling, E., Randall, V., & Skinner, J. The synergistic action of α-melanocyte-stimulating hormone and testosterone on the sebaceous, prostate, preputial, Harderian and lachrymal glands, seminal vessicles and brown adipose tissue in the hypophysectomized-castrated rat. Journal of Endocrinology, 1975, 66, 407–412. (b)CrossRefGoogle Scholar
  22. Elder, W. H. The oil gland of birds. Wilson Bulletin, 1954, 66, 6–31.Google Scholar
  23. Ellwood, R. W. Paternal and maternal behavior in the Mongolian gerbil. Animal Behaviour, 1975, 23, 766–772.CrossRefGoogle Scholar
  24. Fentress, J. C. Development and patterning of movement sequences in inbred mice. In J. Kiger, (Ed.), The biology of behavior. Corvallis: Oregon State University Press, 1972, pp. 83–132.Google Scholar
  25. Fentress, J. G. Specific and nonspecific factors in the causation of behavior. In P. P. G. Bateson & P. H. Klopfer (Eds.), Perspectives in ethology. New York: Plenum Press, 1973, pp. 155–224.Google Scholar
  26. Fentress, J. C. Dynamic boundaries of patterned behavior: Interaction and self-organization. In P. P. G. Bateson, & R. A. Hinde (Eds.), Growing points in ethology. New York: Cambridge University Press, 1976, pp. 135–169.Google Scholar
  27. Figge, F. H. J., Strong, L. C., Strong, L. C., Jr., & Shanbrom, A. Fluorescent porphyrins in Harderian glands and susceptibility to spontaneous mammary tumors. Cancer Research, 1942, 2, 335–342.Google Scholar
  28. Fourman, J., & Ballantyne, B. Cholinesterase activity in the Harderian gland of Anas domesticus. Anatomy Records, 1967, 159, 17–26.CrossRefGoogle Scholar
  29. Gale, B. G., Jr. Social transmission of acquired behavior: A discussion of tradition and social learning in vertebrates. In J. S., Rosenblatt, R. A. Hinde, E. Shaw, & C. Beer (Eds.), Advances in the study of behavior. New York: Academic Press, 1976, pp. 77–100.Google Scholar
  30. Gerling, S., & Yahr, P. Maternal and paternal pheromes in gerbils. Physiology and Behavior, 1982, 28, 667–673.PubMedCrossRefGoogle Scholar
  31. Goodwin, M., & Regnier, F. Unpublished research, 1981.Google Scholar
  32. Gottlieb, G. Conception of prenatal development: Behavioral embryology. Psychological Review, 1976, 83, 215–234.PubMedCrossRefGoogle Scholar
  33. Gould, S. J. Ontogeny and phylogeny. Cambridge, Mass.: The Belknap Press of Harvard University Press, 1977.Google Scholar
  34. Gulotta, E. F. Mammalian species (Meriones unguiculatus). The American Society of Mammalogists, 1971, No. 3, 1–5.Google Scholar
  35. Harder, J. J. Glandula Nova Lachrymalis. Acta Eruditorum, Leipzig, Germany: 1694, 49-52.Google Scholar
  36. Hart, J. S. Rodents. In G. C. Whittow (Ed.), Comparative physiology of thermoregulation, Vol. 2: Mammals. New York: Academic Press, 1971, pp. 1–1Google Scholar
  37. Hofer, M. A. The roots of human behavior. San Francisco: W. H. Freeman, 1981.Google Scholar
  38. Humphrey, T. Postnatal repetition of human prenatal activity sequences with some suggestions of their neuroanatomical basis. In R. J. Robinson (Ed.), Brain and early behavior. New York: Academic Press, 1969, pp. 43–84.Google Scholar
  39. Jacob, J., & Poltz, J. Composition of uropygial gland secretions of birds of prey. Lipids, 1975, 10, 1–8.PubMedCrossRefGoogle Scholar
  40. Jost, U. 1-Alkyl-2, 3-diacyl-sn-glycerol, the major lipid in the Harderian gland of rabbits. Hoppe-Seyler’s Zeitschrift für Physiological Chemistry, 1974, 335, 422–426.CrossRefGoogle Scholar
  41. Jost, U., Kühnel, W., & Schimassek, H. A morphological and biochemical analysis of the Harderian gland in the rabbit. Cytobiologie, 1974, 8(3), 440–456.Google Scholar
  42. Kanwar, K. C. Morphological and cytochemical studies on the Harderian glands of rats. Cellule, 1960, 61, 129–143.Google Scholar
  43. Kennedy, G. Y. Harderoporphyrin: A new porphyrin from the Harderian gland of the rat. Comparative Biochemical Physiology, 1910, 36, 21–36.Google Scholar
  44. Kittrell, E. M. W. The Harderian gland and thermoregulation. Dissertation, University of Texas at Austin, May 1981.Google Scholar
  45. Kittrell, E. M. W., & Thiessen, D. D. Does removal of the Harderian gland affect the physiology of the Mongolian gerbil (Meriones unguiculatus). Physiological Psychology, 1981, 9, 299–304.Google Scholar
  46. Kühnel, W. Structure and cytochemistry of the Harderian gland in rabbits. Zeitschrift für Zellforschung und Mikroscopische Anatomie, 1971, 119, 384–404.CrossRefGoogle Scholar
  47. Kuo, Z. The dynamics of behavior development. New York: Random House, 1967.Google Scholar
  48. Leon, M. Mother-young reunions. In J. M. Sprague & A. N. Epstein (Eds.), Progress in psychobiology and physiological psychology. New York: Academic Press, 1979, pp. 301–304.Google Scholar
  49. Leubbert, S. J., McGregor, L. E., & Roberts, J. C. Temperature acclimation in the Mongolian gerbil (Meriones unguiculates): Changes in metabolic rate and the response to norepinephrine. Comparative Biochemistry and Physiology, 1919, 63A, 169–175.Google Scholar
  50. Loewenthal, N. Beitrag zur Kenntnis der Harderischen Drüssen bei den Säugetieren. Anatomischer Anzeiger, 1892, 7, 546–556.Google Scholar
  51. McKinney, F. Oiling preening (Einolen). Behaviour, 1965, 25, 120–220.PubMedCrossRefGoogle Scholar
  52. McManus, J. J., & Mele, J. A. Temperature regulation in the Mongolian gerbil, Meriones unguiculates. New Jersey Academy of Science, 1969, 14, 21–22.Google Scholar
  53. Mele, J. A. Temperature regulation and bioenergetics of the Mongolian gerbil Meriones unguiculatues. American Midlands Naturalist, 1972, 87, 272–282.CrossRefGoogle Scholar
  54. Moltz, H., & Lee, T. M. The maternal pheromone of the rat: Identity and functional significance. Physiology and Behavior, 1981, 26,(2), 301–306.PubMedCrossRefGoogle Scholar
  55. Mueller, A. P., Sato, K., & Glick, B. The chicken lachrimal gland, gland of Harder, caecal tonsil, and accessory spleen as sources of antibody producing cells. Cell Immunology, 1971, 2, 140–152.CrossRefGoogle Scholar
  56. Orten, J. M., & Keller, J. M. Dietary protein and protoporphyrin formation in the rat. Journal of Biological Chemistry, 1946, 165, 163–167.PubMedGoogle Scholar
  57. Payne, A. P. Pheromonal effects of Harderian gland homogenates on aggressive behavior in the hamster. Journal of Endocrinology, 1977, 73, 191–192.PubMedCrossRefGoogle Scholar
  58. Payne, A. P. Attractant properties of the Harderian gland and its products on male golden hamsters of differing sexual experience. Proceedings of the Society for Endocrinology, 1978, 8/30–39/2.Google Scholar
  59. Payne, A. P. The attractiveness of Harderian gland smears to sexually naive male golden hamsters. Animal Behavior, 1979, 27, 897–904.CrossRefGoogle Scholar
  60. Payne, A. P., McGadey, J., Moore, M. R., & Thompson, G. Cyclic and seasonal changes in Harderian gland activity in the female golden hamster. Proceedings of the Society for Endocrinology, 1976, 6/9–10/9.Google Scholar
  61. Payne, A. P., McGadey, J., Moore, M. R., & Thompson, G. Androgenic control of the Harderian gland in the male golden hamster. Journal of Endocrinology, 1977, 75, 73–82.PubMedCrossRefGoogle Scholar
  62. Pendergrass, M. L., & Thiessen, D. D. Body temperature and autogrooming in the Mongolian gerbil, Meriones unguiculatus. Behavior and Neural Biology, 1981, 33, 524–528.CrossRefGoogle Scholar
  63. Prosser, C. L., & Nelson, D. O. The role of nervous systems in temperature adaptation of poikilotherms. Annual Review of Physiology, 1981, 43, 281–300.PubMedCrossRefGoogle Scholar
  64. Randall, J. Unpublished research, 1981.Google Scholar
  65. Randall, J. A., & Thiessen, D. D. Seasonal activity and thermoregulation in Meriones unguiculatus: A gerbil’s choice. Behavioral Ecology and Sociobiology, 1980, 7, 267–272.CrossRefGoogle Scholar
  66. Randall, W., Elbin, J., & Swenson, R. Biochemical changes involved in a lesion-induced behavior in the cat. Journal of Comparative and Physiological Psychology, 1974, 86, 747–750.PubMedCrossRefGoogle Scholar
  67. Reiter, R. J., & Klein, D. C. Observations on the pineal gland, the Harderian glands, the retina, and the productive organs of adult female rats exposed to continuous light. Journal of Endocrinology, 1971, 51, 117–125.PubMedCrossRefGoogle Scholar
  68. Richard, G. Ontogenesis and phylogenesis: Mutual constraints. Advances in the Study of Behavior, 1979, 9, 229–278.CrossRefGoogle Scholar
  69. Richmond, G., & Sachs, B. D. Grooming in Norway rats: The development of adult expression of a complex motor pattern. Behaviour, 1981, 75, 82–95.CrossRefGoogle Scholar
  70. Roberts, W. W., Bergquist, E. H., & Robinson, T. C. L. Thermoregulatory grooming and sleep-like relaxation induced by local warming of preoptic area and anterior hypothalamus in opposum. Journal of Comparative and Physiological Psychology, 1969, 67,(2), 182–188.PubMedCrossRefGoogle Scholar
  71. Rosenblatt, J. S. Stages in the early behavioural development of altricial young of selected species of non-primate mammals. In P. P. G., Bateson, & R. A. Hinde (Eds.), Growing points in ethology. New York: Cambridge University Press, 1976, pp. 345–383.Google Scholar
  72. Schmidt-Nielsen, K. Animal physiology. London: Cambridge University Press, 1979.Google Scholar
  73. Stokes, D. Personal communication, July 1982.Google Scholar
  74. Stricker, E. M., Everett, J. C., & Porter, E. A. The regulation of body temperature by rats and mice in the heat: Effects of desalivation and the presence of a water bath. Communications in Behavioral Biology, 1968, Part A, 2, 113–119.Google Scholar
  75. Teitelbaum, P., & Epstein, A. The lateral hypothalamic syndrome: Recovery of feeding and drinking after lateral hypothalamic lesions. Psychological Review, 1962, 69, 74–90.PubMedCrossRefGoogle Scholar
  76. Thiessen, D. D. Thermoenergetics and the evolution of pheromone communication. In J. M. Sprague, & A. N. Epstein (Eds.), Progress in psychobiology and physiological psychology. (Vol. 7). New York: Academic Press, 1977.Google Scholar
  77. Thiessen, D. Effects of water deprivation on the Mongolian gerbil, Meriones unguiculatus: Absence of Harderian gland involvement. Physiological Psychology, 1980, 8(3), 379–382.Google Scholar
  78. Thiessen, D. Unpublished research, 1983.Google Scholar
  79. Thiessen, D. D., & Clancy, A. Unpublished research, 1980.Google Scholar
  80. Thiessen, D. D., & Kittrell, M. W. The Harderian gland and thermoregulation in the gerbil (Meriones unguiculatus). Physiology and Behavior, 1980, 24, 417–424.PubMedCrossRefGoogle Scholar
  81. Thiessen, D. D., & Rice, M. Mammalian scent gland marking and social behavior. Psychological Bulletin, 1976, 83, 505–539.PubMedCrossRefGoogle Scholar
  82. Thiessen, D. D., Clancy, A., & Goodwin, M. Harderian gland pheromone in the Mongolian gerbil Meriones unguiculatus. Journal of Chemical Ecology, 1976, 2(2), 231–238.CrossRefGoogle Scholar
  83. Thiessen, D. D., Graham, M., Perkins, J., & Marcks, S. Temperature regulation and social grooming in the Mongolian gerbil (Meriones unguiculatus). Behavioral Biology, 1977, 19, 279–288.PubMedCrossRefGoogle Scholar
  84. Thiessen, D. D., Pendergrass, M., & Harriman, A. E. The thermoenergetics of coat color maintenance by the Mongolian gerbil, Meriones unguiculatus. Thermal Biology, 1982, 7, 51–56.CrossRefGoogle Scholar
  85. Waring, A., & Perper, T. Parental behaviour in the Mongolian gerbil (Meriones unguiculatus): I. Retrieval. Animal Behaviour, 1979, 27, 1091–1097.CrossRefGoogle Scholar
  86. Wetterberg, L., Geller, E., & Yuwiler, A. Harderian gland: An extraretinal photoreceptor influencing the pineal gland in neonatal rats? Science, 1970, 167, 884–885.PubMedCrossRefGoogle Scholar
  87. Wetterberg, L., Yuwiler, A., Geller, E., & Shapiro, S. Harderian gland: Development and influence of early hormonal treatment on porphyrin content. Science, 1970, 168, 996–998.PubMedCrossRefGoogle Scholar
  88. Wetterberg, L., Yuwiler, A., Ulrich, R., Geller, E., & Wallace, R. Harderian gland: Influence on pineal hydroxyindole-O-mehtyltransferase activity in neonatal rats. Science, 1970, 170, 194–196.PubMedCrossRefGoogle Scholar
  89. Wight, P. A. L., Burns, R. B., Rothwell, B., & MacKenzie, G. M. The Harderian gland and the domestic fowl: I. Histology, with reference to the genesis of plasma cells and Russell bodies. Journal of Anatomy, 1971, 110, 307–315.PubMedGoogle Scholar
  90. Wilson, N. E., & Stricker, E. M. Thermal homeostasis in pregnant rats during heat stress. Journal of Comparative and Physiological Psychology, 1979, 93(3), 585–594.PubMedCrossRefGoogle Scholar
  91. Woodhouse, M. A., & Rhodin, J. A. G. The ultrastructure of the Harderian gland of the mouse with particular reference to the formation of its secretory product. Journal of Ultrastructure Research, 1963, 9, 76–98.CrossRefGoogle Scholar
  92. Wysocki, C. J. Neurobehavioral evidence for the involvement of the vomeronasal system in mammalian reproduction. Neuroscience and Biobehavioral Reviews, 1979, 3, 301–341.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Del Thiessen
    • 1
  1. 1.Department of PsychologyThe University of Texas at AustinAustinUSA

Personalised recommendations