The Influence of Sex Hormones on Immunological Processes in the Induction of Diabetes

  • Young Tai Kim
  • Charles E. MoodyJr.


Although diabetes mellitus in humans and experimental animals has been studied for many years, the basic mechanisms underlying the induction of diabetes are still not clear. Recent studies, including our own results, suggest that immune mechanisms may play important roles in the induction and pathogenesis of diabetes mellitus. The evidence supporting the idea of an immune mechanism for induction of diabetes includes the following observations: (1) the occurrence of lymphocyte infiltration of pancreatic islets in acute juvenile-onset- (Type I) diabetes (Gepts, 1965, 1972), (2) the occurrence of autoantibodies to islet cells in Type 1 (Bottazzo et al., 1974; MacCuish et al., 1974a,b), (3) the finding that diabetes mellitus could not be induced in athymic nude mice by diabetogenic M-strain encephalomyocarditis virus (EMC virus) (Buschard and Rygaard, 1976), or diabetogenic chemicals (Buschard and Rygaard, 1978; Paik et al., 1980), and (4) the finding that diabetes mellitus could be transferred to normal mice by the passive transfer of spleen cells from diabetic mice induced by streptozotocin (SZ) (Buschard and Rygaard, 1978; Kiesel et al., 1980).


Beta Cell Female Mouse Male Mouse Spleen Cell Natural Killer Cell Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ablin, R. J., Bruns, G. R., Guinin, P., and Bush, I. M., 1974, The effect of oestrogen on the incorporation of 3H-thymidine by PHA-stimulated human peripheral blood lymphocytes, J. Immunol. 113: 705–707.PubMedGoogle Scholar
  2. Batchelor, J. R., 1968, Hormonal control of antibody formation, in: Regulation of the Antibody Response. ( B. Cinader, ed.), p. 276–282. Charles C. Thomas, Springfield, Ill.Google Scholar
  3. Beck, P., 1969, Progestin enhancement of the plasma insulin response to glucose in rhesus monkeys, Diabetes 18: 146–152.PubMedGoogle Scholar
  4. Bimes, C. P., Graeve, P., Guilhem A., and Amiel, S., 1975, La cytologie thymique sous l’action des hormones genitales chez la cobaye, R. Soc. Biol. (Paris) 169: 233.Google Scholar
  5. Bottazzo, G. F., Florin-Christensen, A., and Donaich, D., 1974, Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies, Lancer 2: 1279–1283.CrossRefGoogle Scholar
  6. Boucher, D. W., and Notkins, A. L., 1973, Virus-induced diabetes mellitus. I. Hyperglycemia hypoinsulinemia in mice infected with encephalomyocarditis virus, J. Exp. Med. 137: 1226–1239.PubMedCrossRefGoogle Scholar
  7. Boucher, D. W., Hayashi, K., Rosenthal, J., and Notkins, A. L., 1975, Virus-induced diabetes mellitus. Ill. Influence of the sex and strain of the host, J. Infect. Dis. 131: 462–466.PubMedCrossRefGoogle Scholar
  8. Buschard, K., Rygaard, J., 1978, Is the diabetogenic effect of streptozotocin in part thymus-dependent?, Acta Pathol. Microbiol. Scand. [C] 86: 23–27.Google Scholar
  9. Buschard, K., Rygaard, J., and Lund, E., 1976, The inability of a diabetogenic virus to induce diabetes mellitus in athymic (nude) mice, Acta Pathol. Microbiol. Scand. [C] 84: 299–303.Google Scholar
  10. Buschard, K., Madsbad, S., and Rygaard, J., 1978, Passive transfer of diabetes mellitus from man to mouse, Lancet 908–910.Google Scholar
  11. Butterworth, M., McClellanen, B., and Allansmith, M., 1967, Influence of sex on immunoglobulin level, Nature 214: 1224–1225.PubMedCrossRefGoogle Scholar
  12. Calzolari, A., 1898, Rechérches experimentales sur un rapport probable entre la fonction du thymus et celle des testicules, Arch. hal. Biol. 30: 71–77.Google Scholar
  13. Cohn, D. A., 1979, High sensitivity to androgen as a contributing factor in sex difference in the immune response, Arthritis Rheum. 22: 1218–1223.PubMedCrossRefGoogle Scholar
  14. Craighead, J. E., and McLane, M. F., 1968, Diabetes mellitus: Induction in mice by encepholomyocarditis virus, Science 162: 913–914.PubMedCrossRefGoogle Scholar
  15. Craighead, J. E., and Steinke, J., 1971, Diabetes mellitus-like syndrome in mice infected with encephalomyocarditis virus, Am. J. Pathol. 63: 119–134.PubMedGoogle Scholar
  16. Dresser, D. W., 1962, Specific inhibition of antibody production. I. Protein overloading paralysis, Immunology 5: 161–168.PubMedGoogle Scholar
  17. Duvic, M., Steinberg, A. D., and Klassen, L. W., 1978, Effect of the anti-estrogen, nafoxidine on NZB/W autoimmune disease, Arthritis Rheum. 21: 414–417.PubMedCrossRefGoogle Scholar
  18. Eidinger, D., and Garrett, T. J., 1972, Studies of the regulatory effects of the sex hormones on antibody formation and stem cell differentiation, J. Exp. Med. 136: 1098–1116.PubMedCrossRefGoogle Scholar
  19. Findlay, J. A., Rookledge, K. A., Beloff-Chain, A., and Lever, J., 1973, A combined biochemical and histological study of the islets of Langerhans in the genetically obese hyperglycemic mouse and the lean mouse including observations on the effect of streptozotocin treatment, J. Endocrinol. 56: 571–583.PubMedCrossRefGoogle Scholar
  20. Fitzgerald, M. G., Mallines, J. M., O’Sullivan, D. J., and Wall, M., 1961, The effect of sex and parity on the incidence of diabetes mellitus. Q. J. Med. 117: 57–70.Google Scholar
  21. Gepts, W., 1965, Pathologic anatomy of the pancreas in juvenile diabetes mellitus, Diabetes 14: 619–633.PubMedGoogle Scholar
  22. Gepts, W., 1972, Pathology of islet tissue in human diabetes, in: Handbood of Physiology, sect. VII, vol. 1 ( Gepts, W., eds.), pp. 289–363, American Physiology Society Washington.Google Scholar
  23. Goodman, M. N., and Hazelwood, R. L., 1974, Short-term effects of oestradiol benzoate in normal hypophysectomized and alloxan-diabetic male rats. J. Endocrinol. 62: 439–449.PubMedCrossRefGoogle Scholar
  24. Greenman, D. L., Dooley, L. K., Breeden, C. R., and Gass, G. H., 1977, Strain differences in the response of the mouse to diethylstilbestrol, J. Toxicol. Environ. Health 3: 589–597.PubMedCrossRefGoogle Scholar
  25. Halstead, S. B., 1969, Observations related to pathogenesis to dengue hemorhagic fever. VI. Hypothesis and discussion, J. Biol. Med. 42: 350.Google Scholar
  26. Hammer, J. A., 1926, Die Menschen Thymusdrüse in Gesundheit and Krankheit. Das Normale Organismus, Z. Mikrosk. Anat. Forsch. (Suppl. 6 ): 1.Google Scholar
  27. Helyer, B. J., and Howie, J. B., 1963, Spontaneous autoimmune disease in NZB/BL mice, Br. Med. J. 2: 505–510.Google Scholar
  28. Kalland, T., 1980, Alterations of antibody response in female mice after neonatal exposure to diethylstilbestrol, J. Immunol. 124: 194–198.PubMedGoogle Scholar
  29. Kalland, T., and Forsberg, J. G., 1977, Delayed hypersensitivity to oxagolone in neonatally estrogenized mice, Cancer Lett. 4: 141–146.CrossRefGoogle Scholar
  30. Kenny, J. F., Pangbum, P. C., and Trial, G., 1976, Effect of estradiol on immune competence in vivo and in vitro studies, Infect. Immun. 13: 448–456.PubMedGoogle Scholar
  31. Kiesel, U., Freytag, G., Biener, J., and Kolb, H., 1980, Transfer of experimental autoimmune insulitis by spleen cells in mice, Diabetologia 19: 516–520.PubMedCrossRefGoogle Scholar
  32. Kim, Y. T., 1983, Immunological studies on induction of diabetes in experimental animals I Cellular basis of induction of diabetes by streptozotocin, Diabetes, in press.Google Scholar
  33. Kim, Y. T., Michaelis, M. A., Tomonari, K. H., and Weksler, M. E., 1983, Immunological studies on induction of diabetes in experimental animals. II. Effects of sex hormones on induction of diabetes by streptozotocin, Diabetes, in press.Google Scholar
  34. Kromann, H., Lernmark, A., Vestergaard, B. F., and Nerup, J., 1979, The influence of the major histocompatibility complex (H-2) on experimental diabetes in mice, Diabetologia 16: 107–114.PubMedCrossRefGoogle Scholar
  35. Lewis, J. T., Foglia, V. G., and Rodrigues, R. R., 1950, The effects of steroids on the incidence of diabetes in rats after subtotal pancreatectomy, Endocrinology 46: 111–121.PubMedCrossRefGoogle Scholar
  36. Like, A. A., and Rossini, A. A., 1976, Streptozotocin-induced pancreatic insulitis: New model of diabetes mellitus, Science 193: 415–417.PubMedCrossRefGoogle Scholar
  37. Luster, M. I., Faith, R. E., McLachlan, J. A., and Clark, G. C., 1979, Effect of in vitro exposure to diethylstilbesterol on the immune response in mice, Toxicol. Appl. Pharmacol. 47: 279–285.PubMedCrossRefGoogle Scholar
  38. Luz, N. P., Marques, M., Ayub, A. C., and Correa, P. R., 1969, Effects of estradiol upon the thymus and lymphoid organs of immature female rats, Am. J. Obstet. Gynecol. 105: 525–528.PubMedGoogle Scholar
  39. MacCuish, A. C., Barnes, E. W., Irvine, W. J., and Duncan, L. J. P., 1974a, Antibodies to pancreatic islet-cells in insulin-dependent diabetics with coexistent autoimmune disease, Lancet 2: 1529–1531.PubMedCrossRefGoogle Scholar
  40. MacCuish, A. C., Jordan, J., Campbell, C. J., Duncan, L. J. P., and Irvine, W. J. 1974b, Cell-mediated immunity to human pancreas in diabetes mellitus, Diabetes 23: 693–697.PubMedGoogle Scholar
  41. Money, W. L., Fager, J., and Rawson, W., 1952, The comparative effects of various steroids on lymphoid tissue of the rat, Cancer Res. 12: 206.PubMedGoogle Scholar
  42. Morrow, P. L., Freedman, A., and Craighead, J. E., 1980, Testosterone effect on experimental diabetes mellitus in encephalomyocarditis (EMC) virus infected mice, Diabetologica 18: 247–249.CrossRefGoogle Scholar
  43. Okayasu, I., Kong, Y. M., and Rose, N. R., 1981, Effect of castration and sex hormones on experimental autoimmune thyroiditis, Clin. Immunol. Immunopathol. 20: 240–245.PubMedCrossRefGoogle Scholar
  44. Paik, S. G., Fleischer, M., and Shin, S., 1980, Insulin-dependent diabetes mellitus induced by subdiabetogenic doses of streptozotocin: Obligatory role of cell-mediated autoimmune process, Proc. Natl. Acad. Sci. USA 77: 6129–6133.PubMedCrossRefGoogle Scholar
  45. Patterson, B., Hellerstrom, C., and Gunnarsson, R., 1970, Structure and metabolism of the pancreatic islets in streptozotocin treated guinea pigs, Horm. Metab. Res. 2: 313–317.CrossRefGoogle Scholar
  46. Pepper, F. J., 1961, The effect of age, pregnancy, and lactation on the thymus gland and lymph nodes of the mouse, J. Endocrinol. 22: 335–348.PubMedCrossRefGoogle Scholar
  47. Persike, E. D., 1940, Involution of thymus during pregnancy in young mice, Proc. Soc. Exp. Biol. 45: 315–317.Google Scholar
  48. Phuc, L. H., Papiernik, M., Berrik, S., and Duval, D., 1981, Thymus involution in pregnant mice. I. Characterization of the remaining thymocyte subpopulation. Clin. Exp. Immunol. 44: 247–252.PubMedGoogle Scholar
  49. Rakieter, N., Rakieter, M. C., and Nadkarni, M. W., 1963, Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother. Res. 29: 91–98.Google Scholar
  50. Rodriguez, R. R., 1965, Influence of osetrogens and androgens on the production and prevention of diabetes, in: On the Nature and Treatment of Diabetes ( G. A., Wrenshell, and B. S., Liebel, eds.), pp. 288–307. Excerpta Medical Foundations, Amsterdam.Google Scholar
  51. Rossini, A. A., Appel, M. C., Wiliam, R. M., and Like, A. A., 1977a, Genetic influence of streptozotocininduced insulitis and hyperglycemia. Diabetes 26: 916–920.PubMedCrossRefGoogle Scholar
  52. Rossini, A. A., Like, A. A., Chick, W. L., Appel, M. C., and Cahil, G. F., 1977b, Studies of streptozotocin induced insulitis and diabetes. Proc. Natl. Acad. Sci. USA 74: 2485–2489.PubMedCrossRefGoogle Scholar
  53. Rossini, A. A., Williams, R. M., Appel, M. C., and Like, A. A., 1978, Sex differences in the multiple-dose streptozotocin model of diabetes, Endocrinology 103: 1518–1520.PubMedCrossRefGoogle Scholar
  54. Seaman, W. E., Blackman, M. A., Gindhart, T. D., Roubinian, J. R., Loeb, J. M., and Talal, N., 1978, B-estradiol reduces natural killer cells in mice, J. Immunol. 121: 2193–2198.PubMedGoogle Scholar
  55. Seaman, W. R., Merigan, T. C., and Talal, N., 1979, Natural killing in estrogen-treated mice responds poorly to poly I-C despite normal stimulation of circulating interferon, J. lmmunol. 123: 2903–2905.Google Scholar
  56. Shiff, R. I., Mercier, D., and Buckley, R. H., 1975, Inability of lactational hormones to account for the inhibitory effects of pregnancy plasmas on lymphocyte responses in vitro, Cell. Immunol. 20: 69–80.CrossRefGoogle Scholar
  57. Sloan, J. M., and Oliver, I. M. 1975. Progestogen-induced diabetes in the dog, Diabetes 24: 337–344.PubMedCrossRefGoogle Scholar
  58. Steinberg, A. D., Pincus, T., and Talal, N., 1971, The pathogenesis of autoimmunity in new zealand mice. III. Factors influencing the formation of anti-nucleic acid antibodies, Immunology 20: 523–531.PubMedGoogle Scholar
  59. Steinberg, A. D., Roths, J. B., Murphy, E. D., Steinberg, R. T., and Raveche, E. S., 1980, Effect of thymectomy or androgen administration upon the autoimmune disease of MRL/Mp-1pr/lpr mice, J. Immunol. 125: 871–873.PubMedGoogle Scholar
  60. Steven, W. M., and Snook, T., 1975, The stimulatory effects of diethylstilbestrol and diethylstilbestrol diphosphate on the reticuloendothelial cells of the rat spleen, Am. J. Anat. 144: 339–360.PubMedCrossRefGoogle Scholar
  61. Talai, N., and Gallo, R. C., 1972, Antibodies to a DNA:RNA hybrid measured by cellulose ester filter immune assay, Nature 240: 240–241.CrossRefGoogle Scholar
  62. Terres, G., Morrison, S. L., and Habicht, G. S., 1968, Quantitative difference in the immune response between male and female mice, Proc. Soc. Exp. Biol. Med. 127: 664–667.PubMedGoogle Scholar
  63. West, K. M., 1978, Epidemiology of Diabetes and its Vascular Lesion, Elsevier, Amsterdam.Google Scholar
  64. Wong, C. Y., Woodruff, J. J., and Woodruff, J. F., 1977, Generation of cytotoxic T lymphocytes during coxsackie virus B-3 infection. III. Role of sex, J. Immunol. 119: 591–597.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Young Tai Kim
    • 1
  • Charles E. MoodyJr.
    • 1
  1. 1.Divisions of Allergy and Immunology, and Geriatrics and Gerontology, Department of MedicineCornell University Medical CollegeNew YorkUSA

Personalised recommendations