Structure and Function of Insulin

  • J. E. Pitts
  • M. Bajaj


Knowledge of the conformation of insulin during its complex life cycle of biosynthesis, storage, receptor binding, and degradation may play an important part in the proper design of orally administered analogues, competitive inhibitors, and insulins with selectively enhanced biological activity.


Circular Dichroism Human Insulin Bovine Insulin Porcine Insulin Insulin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. J., Blundell, T. L., Dodson, E. J., Dodson, G. G., Vijayan, M., Baker, E. N., Harding, M. M., Hodgkin, D. C., Rimmer, B. and Sheat, S., 1969, Structure of rhombohedreal 2-zinc insulin crystals, Nature 224: 491–495.CrossRefGoogle Scholar
  2. Alberti, K. G. M. M., and Nattrass, M., 1978, Highly purified insulins, Diabetologia 15: 77–80.PubMedCrossRefGoogle Scholar
  3. Albisser, A. M., Lougheed, W., Perlman, K., and Bahoric, A., 1980, Nonaggregating insulin solutions for longterm glucose control in experimental and human diabetes, Diabetes 28: 241–243.CrossRefGoogle Scholar
  4. Arquilla, E. R., Bromer, W. W., and Mercola, D., 1969, Immunology, conformation and biological activity of insulin, Diabetes 18: 193–205.PubMedGoogle Scholar
  5. Arquilla, E. R., Miles, P. V., and Morris, J. W., 1972, Immunochemistryof insulin, in: Handbook of Physiology D. F. Steiner, and N. Freinkel, eds. vol. 1, pp. 159–173, Waverley Press, Baltimore.Google Scholar
  6. Arquilla, E. R., Dorio, R. J., and Brugman, T. M., 1976, Structural studies of insulin and insulin derivatives using various immunologic indicators and antibody populations, Diabetes 25: 397–403.PubMedCrossRefGoogle Scholar
  7. Arquilla, E. R., Thiene, P., Brugman, T. M., Ruess, W., and Sugiyama, R., 1978, Effects of zinc ion on the conformation of antigenic deterniinants on insulin, Biochem. J. 175: 289–297.PubMedGoogle Scholar
  8. Arquilla, E. R., Kelso, J. M., Tamai, I. Y., and Roth, M. D., 1980, The induction of hyperglycaemia with insulin antibodies to B chain determinants in: Insulin. Chemistry, Structure and Function of Insulin and Related Hormones (D. Brandenburg, and A. Wollmer, eds.), pp. 593–601, Walter de Gruyter and Co., Berlin.Google Scholar
  9. Baker, E. N., and Dodson, G., 1970, X-ray diffraction data on some crystalline varieties of insulin, J. Mol. Biol. 54: 605–609.PubMedCrossRefGoogle Scholar
  10. Bedarkar, S., 1982, Conformation and molecular biology of insulin and related growth factors. Ph.D. Thesis, University of London.Google Scholar
  11. Bedarkar, S., Turnell, W. G., Blundell, T. L., and Schwabe, C., 1977, Relaxin has conformational homology with insulin, Nature 270: 449–451.PubMedCrossRefGoogle Scholar
  12. Bell, G. I., Swain, W. P., Pictet, R. L., Cordell, B., Goodman, H. M., and Rutter, W., 1979, Nucleotide sequence of a cDNA clone encoding human preproinsulin, Nature 282: 525–527.PubMedCrossRefGoogle Scholar
  13. Bell, G. I., Pictet, R. L., Rutter, W. J., Cordell, B., Tischer, E., and Goodman, H. M., 1980, Sequence of the human insulin gene, Nature 284: 26–32.PubMedCrossRefGoogle Scholar
  14. Bentley, G. A., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., and Mercola, D. A., 1976, Structure of insulin in 4-Zn insulin, Nature 261: 166–168.PubMedCrossRefGoogle Scholar
  15. Berson, S. A., and Yalow, R. S., 1957, Studies with insulin-binding antibody, Diabetes 6: 402–405.PubMedGoogle Scholar
  16. Berson, S. A., and Yalow, R. S., 1959a, Quantitative aspects of the reaction between insulin and insulin-binding antibody, J. Clin. Invest. 38: 1996–2016.PubMedCrossRefGoogle Scholar
  17. Berson, S. A., and Yalow, R. S., 1959b, Species-specificity of human anti-beef, pork insulin serum, J. Clin. Invest. 38: 2017–2025.PubMedCrossRefGoogle Scholar
  18. Berson, S. A., and Yalow, R. S., 1966, Insulin in blood and insulin antibodies, Am. J. Med. 40: 666–690.CrossRefGoogle Scholar
  19. Beychok, S., 1966, Circular dichroism of biological macromolecules, Science 154: 1288–1299.PubMedCrossRefGoogle Scholar
  20. Bloom, S. R., West, A. M., Polak, J. M., Barnes, A. J., and Adrian, T. E., 1978, Hormonal contaminants of insulin, in: Gut Hormones ( S. R. Bloom, ed.), pp. 318–322, Churchill Livingstone, London.Google Scholar
  21. Blundell, T. L., 1979, Conformation and molecular biology of polypeptide hormones. 1. Insulin, insulinlike growth factors and relaxin, Trends Biochem. Sci. 4: 51–53.CrossRefGoogle Scholar
  22. Blundell, T. L., and Horuk, R., 1981, A monomeric insulin from the casiragua: Model building using computer graphics, Hoppe Seylers Z. Physiol. Chem. 362: 727–737.PubMedCrossRefGoogle Scholar
  23. Blundell, T. L., and Humbel, R. E., 1980, Hormone families: Pancreatic hormones and homologous growth factors, Nature 287: 781–787.PubMedCrossRefGoogle Scholar
  24. Blundell, T. L., and Johnson, L. N., 1976, Protein Crystallography, Academic Press, London.Google Scholar
  25. Blundell, T. L., and Wood, S. P., 1982, The conformation, flexibility and dynamics of polypeptide hormones. Annu. Rev. Biochem. 51: 123–154.PubMedCrossRefGoogle Scholar
  26. Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., Mercola, D. A., and Vijayan, M., 1971, Atomic positions in rhombohedral 2-zinc insulin crystals Nature 231: 506–511.PubMedCrossRefGoogle Scholar
  27. Blundell, T. L., Dodson, G. G., Hodgkin, D., and Mercola, D., 1972, Insulin: The structure in the crystal and its reflection in chemistry and biology, Adv. Protein Chem. 26: 279–402.CrossRefGoogle Scholar
  28. Blundell, T. L., Bedarkar, S., Rinderknecht, E., and Humbel, R. E., 1978, Insulin-like growth factor: A model for tertiary structure accounting for immunoreactivity and receptor binding, Proc. Natl. Acad. Sci. USA 75: 180–184.PubMedCrossRefGoogle Scholar
  29. Boesel, A. W., and Carpenter, F. H., 1972, Preparation and properties of tetranitro (nitrotyrosine) insulin (bovine) Fed. Proc. Fed. Am. Soc. Exp. Biol. 31: 255–258.Google Scholar
  30. Bradbury, J. H., and Brown, L. R., 1977, Nuclear magnetic resonance spectroscopic studies of the amino groups of insulin, Eur. J. Biochem. 76: 573–582.PubMedCrossRefGoogle Scholar
  31. Brandenburg, D., Lei Kejian, Wang Zhizhen, Dong Bei, Ru Binggen, and Zhu Shangquan, 1980, Prepara- tions and properties of crystalline porcine and bovine (Trp) B1 insulin, Sci. Sin. 13: 1443–1452.Google Scholar
  32. Brill, A. S., and Venable, J. H. Jr., 1967, electron paramagnetic resonance spectroscopy of protein single crystals. I. Experimental methods, in: Proceedings of the 2nd Internatinal Conference of Magnetic Resonance in Biological Systems“ (A. Ehrenberg, B. Malmström, and T. Vänngard, eds.), Pergamón Press, Oxford, pp. 365–372.Google Scholar
  33. Brunfeldt, K., and Deckert, T., 1964, Antibodies in the pig against pig insulin, Acta Endocrinol. 47: 366–367.Google Scholar
  34. Canova-Davis, E., and Carpenter, F. H., 1980, Specific activation of the arginine carboxyl group of the B chain of bovine des-octapeptide-(B23–30)-insulin, in: Insulin. Chemistry, Structure and Function of Insulin and Related Hormones ( D. Brandenburg, and A. Wollmer, eds.), pp. 107–115, Walter de Gruyter and Co., Berlin.Google Scholar
  35. Cao, Q. P., Li, T., Peng, X., and Zhang, Y. S., 1980, Insulins from different species—chicken and snake. Sci. Sin. 23: 1309–1315.PubMedGoogle Scholar
  36. Cao, Q. P., Cin, D. F., and Zhang, Y. S., 1981, Enzymatic synthesis of des-hexapeptide insulin, Nature 292: 774–775.PubMedCrossRefGoogle Scholar
  37. Chan, S. J., Keim, P., and Steiner, D. F., 1976, Cell-free synthesis of rat preproinsulins; characterization and partial amino acid sequence determination, Proc. Natl. Acad. Sci. USA 73: 1964–1968.PubMedCrossRefGoogle Scholar
  38. Corcos, J., and Ovary, A., 1965, Biological properties of guinea pig anti-insulin antibodies, Proc. Soc. Exp. Bio!. Med. 119: 142–148.Google Scholar
  39. Cutfield, S., 1975, X-ray studies of insulin. D. Phil Thesis, Oxford University.Google Scholar
  40. Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., and Sabesan, M. N., 1974, Low resolution crystal structure of hagfish insulin, J. Mol. Bio!. 87: 23–30.CrossRefGoogle Scholar
  41. Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Emdin, S. F., and Reynolds, C. D., 1979, Structure and biological activity of hagfish insulin, J. Mol. Biol. 132: 85–100.PubMedCrossRefGoogle Scholar
  42. Czech, M P., Massague, J., and Pilch, P. F., 1981, The insulin receptor: Structural features. Trends Biochem. Sci. 8: 222–225.CrossRefGoogle Scholar
  43. Deckert, T., and Grundahl, E., 1970, The antigenicity of pig insulin, Diabetologia 6: 15–20.PubMedCrossRefGoogle Scholar
  44. Deckert T., Andersen, O. O., Grundahl, E., and Kerp, L., 1972, Iso-immunization of man by recrystallized human insulin, Diabetologia 8: 358–361.PubMedCrossRefGoogle Scholar
  45. De Graaff, R. A. G., Lewit-Bentley, A., and Tolley, S. P., 1981, Effects of destabilizing agents on the insulin hexamer structure, in: Structural Studies on Molecules of Biological Interest ( G. Dodson, J. P. Glusker, and D. Sayre, eds.), pp. 547–556, Clarendon Press, Oxford.Google Scholar
  46. De Meyts, P., Bianco, A. R., and Roth, J., 1976, Site-site interactions among insulin receptors. Characterization of the negative co-operativity, J. Bio!. Chem. 251: 1877–1888.Google Scholar
  47. De Meyts, P., Van Obberghen, E., Roth, J., Wollmer, A., and Brandenburg, D., 1978, Mapping of the residues responsible for the negative co-operativity of the receptor binding region of insulin, Nature 273: 504–509.PubMedCrossRefGoogle Scholar
  48. De Meyts, P., Halban, P., and Hepp, K. D., 1981, In vitro studies on biosynthetic human insulin: An overview, Diabetes Care 4: 144–146.Google Scholar
  49. Devlin, J. G., Brien, T., and Stephenson, N., 1967, Relation between antibody and insulin dose, Br. Med. J. I: 542–544.CrossRefGoogle Scholar
  50. Diaconescu, C., Saunders, D., Gattner, H. G., and Brandenburg, D., 1982, (LeuH24) and(Leuß2S) insulins are not antagonists of lipogenesis in adipocytes, Hoppe Seylers Z. Physiol. Chem. 363(2):187–192.CrossRefGoogle Scholar
  51. Dixon, K., Exon, P. D., and Malins, J. M., 1975, Insulin antibodies and the control of diabetes, Q. J. Med. 44: 543–553.PubMedGoogle Scholar
  52. Dockerill, S., 1978, Structure and function studies with insulin and glucagon, D. Phil Thesis, University of Sussex, U.K.Google Scholar
  53. Dodson, E. J., Dodson, G. G., Hodgkin, D. C., and Reynolds, C. D., 1979, Structural relationships in the 2-zinc insulin hexamer, Can. J. Biochem. 57: 469–479.PubMedCrossRefGoogle Scholar
  54. Dodson, E. J., Dodson, G. G., Reynolds, C. D., and Vallely, D. C., 1980a, A comparison between the insulin molecules in 2- and 4-zinc insulin crystals, in: Insulin. Chemistry, Structure and Function of Insulin and Related Hormones (D. Brandenburg, and A. Wollmer, eds.), pp. 9–16„ Walter de Gruyter and Co., Berlin.Google Scholar
  55. Dodson, G. G., Cutfield, S., Hoenjet, E., Wollmer, A., and Brandenburg, D., 1980b, Crystal structure, aggregation and biological potency of beef insulin cross-linked at Al and B29 by diamino suberic acid, in: Insulin. Chemistry, Structure and Function of Insulin and Related Hormones ( D. Brandenburg, and A. Wollmer, eds.), pp. 17–26, Walter de Gruyter and Co., Berlin.Google Scholar
  56. Duve, H., Thorpe, A., and Lazarus, N., 1979, Isolation of material displaying insulin-like immunological and biological activity from the brain of the blowfly “Calliphora Vomitoria,” Biochem. J. 184: 221–227.PubMedGoogle Scholar
  57. Emdin, S. O., and Falkmer, S., 1980, On the molecularbiologyof hagfish insulin, in. Insulin. Chemistry, Structure and Function of Insulin and Related Hormones (D. Brandenburg, and A. Wollmer, eds.), pp. 683–691, Walter de Gruyter and Co., Berlin.Google Scholar
  58. Emdin, S. O., Gammeltoft, S., and Gliemann, J., 1977, Degradation, receptor binding affinity and potency of insulin from the Atlantic hagfish (myxine glutinosa) determined in isolated rat fat cells, J. Bio!. Chem. 252: 602–608.Google Scholar
  59. Eng, J., and Yalow, R. S., 1980, Insulin recoverable from tissues, Diabetes 29: 105–109.PubMedCrossRefGoogle Scholar
  60. Ettinger, M. J., and Timasheff, S. N., 1971, Optical activity of insulin. I. On the nature of the circular dichroism bands, Biochemistry 10: 824–830.PubMedCrossRefGoogle Scholar
  61. Evans, J. C., Morgan, P. H., Mahbouba, M., and Smith, H. J., 1979, An electron paramagnetic resonance study of native and modified freeze-dried cupric insulin hexamer, J. Inorg. Biochem. 11: 129–137.PubMedCrossRefGoogle Scholar
  62. Frank, B. H., Veros, A. J., and Pekar, A. H., 1972a, Physical studies on proinsulin. A comparison of the titration behaviour of the tyrosine residues in insulin and proinsulin, Biochemistry 11: 4926–4931.PubMedCrossRefGoogle Scholar
  63. Frank, B. H., Pekar, A. H., and Veros, A. J., 1972b, Insulin and proinsulin conformation in solution, Diabetes 21: 486–491.PubMedGoogle Scholar
  64. Friesen, H. J., Brandenburg, D., Diaconescu, C., Gattner, H.-G., Naithani, V. K., Nowak, J., Zahn, H., Dockerill, S., Wood, S. P., and Blundell, T. L., 1977, Structure-function relationships of insulin modified in the Al-region, in: Proceedings, 5th American Peptide Symposium ( M. Goodman and J. Meienhofer, eds.), pp. 136–140. John Wiley, New York.Google Scholar
  65. Froesch, E. R., Burgi, H., Muller, W. A., Humbel, R. E., Jakob, A., and Labhart, A., 1976, Non-suppressible insulinlike activity of human serum: Purification, physicochemical and biological properties and its relations to total serum ILA, Rec. Prog. Horm. Res. 23: 565–616.Google Scholar
  66. Fullerton, W. W., Potter, R., and Low, R. W., 1970, Proinsulin: Crystallization and preliminary x-ray diffraction studies, Proc. Natl. Acad. Sci. USA 66: 1213–1219.PubMedCrossRefGoogle Scholar
  67. Gammeltoft, S., 1981, Receptor binding of biosynthetic human insulin on isolated pig hepatocytes, Diabetes Care 4: 235–237.PubMedCrossRefGoogle Scholar
  68. Gattner, H. G., 1976, Darstellung-und Eigenschaften von despentapeptide (B26–1330)—Rinderinsulin. Hoppe Seylers Z. Physiol. Chem. 356: 1397–1404.CrossRefGoogle Scholar
  69. Goldman, J., and Carpenter, F. H., 1974, Zinc binding, circular dichroism and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives, Biochemistry 13: 4566–4574.PubMedCrossRefGoogle Scholar
  70. Gowan, L., Reinig, J. W., Schwabe, C., Bedarkar, S., and Blundell, T. L., 1981, On the primary and tertiary structure of relaxin from the sand tiger shark, FEBS Letts 129: 80–82.CrossRefGoogle Scholar
  71. Grant, P. T., Coombs, T. L., and Frank, B. H., 1972, Differences in the nature of the interaction of insulin and proinsulin with zinc, Biochem. J. 126: 433–440.Google Scholar
  72. Greider, M. H., Howell, S. L., and Lacy, P. E., 1969, Isolation and properties of secretory granules from rat islets of Langerhans, J. Cell. Biol. 41: 162–166.PubMedCrossRefGoogle Scholar
  73. Harding, M. M., Crowfoot Hodgkin, D., Kennedy, A. F., O’Connor, A., and Weitzmann, P. D. J., 1966, The crystal structure of insulin II. An investigation of rhombohedral zinc insulin crystals and a report of other crystalline forms, J. Mol. Biol. 16: 212–216.PubMedCrossRefGoogle Scholar
  74. Havrankova, J., Schmechel, D., Roth, J., and Brownstein, M., 1978, Identification of insulin in rat brain, Proc. Natl. Acad. Sci. USA 75: 5737–5741.PubMedCrossRefGoogle Scholar
  75. Horuk, R., 1980, A biophysical approach to the investigation of the properties of insulin and its receptor. D. Phil Thesis, Birkbeck College, University of London.Google Scholar
  76. Horuk, R., Goodwin, P., O’Connor, K., Neville, R. W. J., Lazarus, N. R., and Stone, D., 1979, Evoluationary change in the insulin receptors of hystricomorph rodents, Nature 279: 439–440.PubMedCrossRefGoogle Scholar
  77. Horuk, R., Blundell, T. L., Lazarus, N. R., Neville, R. W. J., Stone, D., and Wollmer, A. 1980a, A monomeric insulin from the porcupine (hystrix cristata) an old world hystricomorph, Nature 286: 822–823.PubMedCrossRefGoogle Scholar
  78. Horuk, R., Wood, S. P., Blundell, T. L., Lazarus, N. R., and Neville, R. N. J., 1980b, The use of hystricomorph insulins in defining the insulin-receptor interactions. Actual. Chim. Thera. 7: 15–25.Google Scholar
  79. Horuk, R., Wood, S. P., Blundell, T. L., Lazarus, N. R., Neville, R. W. J., Raper, J. H., and Wollmer, A., 1980c, Structure, self-association and potency of casiragua and guinea pig insulins: evidence that monomeric insulin can bind receptors, in Hormones and Cell Regulation ( J. Dumont and J. Nunez, eds.), vol 4, pp. 123–139, Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  80. Isaacs, N., James, R., and Niall, H., 1978, Relaxin and its structural relationship to insulin, Nature 271: 278–281.PubMedCrossRefGoogle Scholar
  81. Jonczyk, A., Keefer, L. M., Naithani, V. K., Gattner, H. G., De Meyts, P., and Zahn, H., 1981, Preparation and biological properties of (LeuB24, Leu B25) human insulin, Hoppe Seylers Z. Physiol. Chem. 362: 557–561.PubMedCrossRefGoogle Scholar
  82. Kahn, C. R., 1979, What is the molecular basis of the action of insulin? Trends in Biochem. 11: N263–N265.CrossRefGoogle Scholar
  83. Kahn, C. R., Baird, K. L., Jarrett, D. B., and Flier, J. S., 1978, Direct demonstration that receptor crosslinking or aggregation is important in insulin action, Proc. Natl. Acad. Sci. USA 75: 4209–4213.PubMedCrossRefGoogle Scholar
  84. Keck, K., 1977, Ir gene control of carrier recognition: III Cooperative recognition of two or more carrier determinants on insulin of different species, Eur. J. Immunol. 7: 811–816.PubMedCrossRefGoogle Scholar
  85. Keefer, L. M., Piron, M. A., De Meyts, P., Gattner, H.-G., Diaconescu, C., Saunders, D., and Brandenburg, D., 198la, Impaired negative cooperativity of the semisynthetic analogues human (LeuB24) and (LeuB25) insulins, Biochem. Biophys. Res. Commun. 100: 1229–1236.Google Scholar
  86. Keefer, L. M., Piron, M. A., and De Meyts, P., 1981b, Receptor binding properties and biological activity in vitro of biosynthetic human insulin, Diabetes Care 4: 209–214.PubMedCrossRefGoogle Scholar
  87. King, G. L., and Kahn, C. R., 1981, Non-parallel evolution of metabolic and growth-promoting functions of insulin, Nature 292: 644–646.PubMedCrossRefGoogle Scholar
  88. King, G. L., Kahn, C. R., Rechler, M. M., and Nissley, P. S., 1980, Direct demonstration of separate receptors for growth and metabolic activities of insulin and MSA (an insulin-like growth factor) using antibodies to the insulin receptor, J. Clin. Invest. 66: 130–140.PubMedCrossRefGoogle Scholar
  89. Kumar, D., 1979, Immunoreactivity of insulin antibodies in insulin-treated diabetics: Significance of the beta-chain carboxy-terminal amino acid (B–30) of insulin, Diabetes 28: 994–1000.PubMedGoogle Scholar
  90. Kurtz, A. B., Harrington, M. G., Matthews, J. A., and Nabarro, J. D. N., 1979, Factitious diabetes and antibody mediated resistance to beef insulin, Diabetologia 16: 65–67.PubMedCrossRefGoogle Scholar
  91. Lange, R. H., 1971, Crystalline B-granules: Rhombic dodecahedra (a=7.4nm), Diabetologia 7: 465–466.PubMedCrossRefGoogle Scholar
  92. Lange, R. H., 1973, Histochemistry of the Islets of Langerhans, in Handbook of Histochemistry, W. Graumann, and K. Neumann, eds. pp. 1–141, Fischer, Stuttgart.Google Scholar
  93. Lazarus, N. R., O’Connor, K., Neville, R. W. J., Goodwin, P., Horuk, R., and Stone, D., 1980, Hystricomorph insulins and insulin receptors in: Insulin. Chemistry, Structure and Function of Insulin and Related Hormones (D. Brandenburg, and A. Wollmer, eds.), pp. 301–306, Walter de Gruyter and Co., Berlin.Google Scholar
  94. Led, J. J., Grant, D. M., Horton, W. J., Sundby, F., and Vilhelmsen, K., 1975, Carbon–13 magnetic resonance study of structural and dynamical features in carbamylated insulins, J. Am. Chem Soc. 97: 5997–6007.PubMedCrossRefGoogle Scholar
  95. Lippert, J. L., Tyminski, D., and Desmeules, P. J., 1976, Determination of the secondary structure of proteins by laser Raman spectroscopy, J. Amer. Chem. Soc. 98: 7075–7080.CrossRefGoogle Scholar
  96. Lockwood, D. H., and Prout, T. E., 1965, Antigenicity of heterdlogous and homologous insulin, Metabolism 14: 530–538.PubMedCrossRefGoogle Scholar
  97. Lomedico, P. T., Chan, S. J., Steiner, D. F., and Saunders, G. F., 1977, Immunological and chemical characterization of bovine preproinsulin, J. Biol. Chem. 252: 7971–7978.PubMedGoogle Scholar
  98. Lomedico, P. T., Rosenthal, N., Efstratiadis, A., Gilbert, W., Kdodner, R., and Tizard, R., 1979, The structure and evolution of the two nonallelic rat preproinsulin genes, Cell 18: 545–558.PubMedCrossRefGoogle Scholar
  99. Low, B. W., and Berger, J. E., 1961, Insulin-preliminary X-ray studies of citrate crystals, Acta Cryst. 14: 82.CrossRefGoogle Scholar
  100. Low, B. W., and Chen, C. C. H., 1969, Monoclinic insulin crystals, J. Mol. Biol. 43: 227–229.PubMedCrossRefGoogle Scholar
  101. Lu Zixian and Yu Ronghua, 1980, Preparation and crystallization of des (B-chain C-terminal) heptapeptide insulin. Sci. Sin. 13: 1592–1598.Google Scholar
  102. Marki, F., De Gasparo, M., Eisler, K., Kamber, B., Riniker, B., Rittel, W., and Sieber, P., 1979, Synthesis and biological activity of seventeen analogues of human insulin, Hoppe Seylers Z. Physiol. Chem. 360: 1619–1632.PubMedCrossRefGoogle Scholar
  103. Markussen, J., and Schiff, H. E., 1973, Molecular parameters of C-peptide from bovine proinsulin, Int. J. Pep. Protein Res. 5: 69–72.CrossRefGoogle Scholar
  104. Moloney, P. J., and Coval, M., 1955, Antigenicity of insulin: Diabetes induced by specific antibodies. Biochem. J. 59: 179–185.PubMedGoogle Scholar
  105. Olefsky, J. M., Green, A., Ciaraldi, T. P., Saekow, M., Rubenstein, A. H., and Tager, H. S., 1981, Relationship between negative cooperativity and insulin action, Biochemistry 20: 4488–4492.PubMedCrossRefGoogle Scholar
  106. Paselk, R. A., and Levy, D., 1974, Fluorine nuclear magnetic resonance studies of trifluoroacetyl-insulin derivatives. Effects of pH on conformation and aggregation, Biochemistry 13: 3340–3345.PubMedCrossRefGoogle Scholar
  107. Pearse, A. G. E., 1968, Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial c cells and calcitonin, Proc. R. Soc. B170: 71–80.CrossRefGoogle Scholar
  108. Peking Insulin Structure Research Group, 1973, Studies on the structure-function relationship of insulin. The relationship of the C-terminal peptide sequence of the B chain to the activity of insulin, Sci. Sin. 16: 61–70.Google Scholar
  109. Peking Insulin Structure Research Group, 1974, Studies on the insulin crystal sructure: The molecule at 1.8A resolution, Sci. Sin. 17: 752–777.Google Scholar
  110. Peking Insulin Structure Research Group, 1976a, Structural studies on des-pentapeptide (B26–30) Insulin. I. The preparation and properties of des-pentapeptide insulin, Sci. Sin. 19: 351–357.Google Scholar
  111. Peking Insulin Structure Research Group, 1976b, Structural studies on des-pentapeptide (B26–30) Insulin. II. Growth of crystals and preliminary crystallographic observations, Sci. Sin. 19: 358–361.Google Scholar
  112. Perler, F., Efstratiadis, A., Lomedico, P., Gilbert, W., Kolodner, R., and Dodgson, J., 1980, The evolution of genes: the chicken prepminsulin gene, Cell 20: 555–566.PubMedCrossRefGoogle Scholar
  113. Pilch, P. F., and Czech, M. P., 1980, Hormone binding alters the conformation of the insulin receptor, Science 210: 1152–1153.PubMedCrossRefGoogle Scholar
  114. Piron, M. A., Michiels-Place, M., Waelbroeck, M., De Meyts, P., Schuttler, A., and Brandenburg, D., 1980, Structure-activity relationships of insulin-induced negative cooperativity among receptor sites, in: Insulin. Chemistry, Structure and Function of Insulin and Related Hormones ( D. Brandenburg, and A. Wollmer, eds.), pp. 371–391, Walter de Gruyter and Co., Berlin.Google Scholar
  115. Pitts, J. E., 1979, Active sites of insulin, in: Diabetes 1979, Proceedings of the 10th Congress of the International Diabetes Federation, ( W. K. Waldhausl, ed.), pp. 88–91, Excerpta Medica, Amsterdam.Google Scholar
  116. Pitts, J. E., 1980, Structure and function of pancreatic polypeptide hormones, D.Phil Thesis, University of Sussex, U.K.Google Scholar
  117. Pitts, J. E., Wood, S. P., Horuk, R., Bedarkar, S., and Blundell, T. L., 1980, Pancreatic hormone storage granules: The role of metal ions and polypeptide oligomers, in: Insulin. Chemistry, Structure and Function of Insulin and Related Hormones ( D. Brandenburg, and A. Wollmer, eds.), pp. 673–682, Walter de Gruyter and Co., Berlin.Google Scholar
  118. Plisetskaya, E., Kazakov, V. K., Solbitskaya, L., and Leibson, L. G., 1978, Insulin producing cells in the gut of Freshwater bivalve molluscs, Anodonta aygrea and Unio pictorum, and the role of insulin in the regulation of their carbohydrate metabolism, Gen. Comp. Endocrinol. 35: 133–145.PubMedCrossRefGoogle Scholar
  119. Pocker, Y., and Biswas, S. B., 1980, Conformational dynamics of insulin in solution. Circular dichroic studies, Biochemistry 19: 5043–5049.PubMedCrossRefGoogle Scholar
  120. Pocker, Y., and Biswas, S. B., 1981, Self-association of insulin and the role of hydrophobic binding: A thermodynamic model of insulin dimerisation, Biochemistry 20: 4354–4361.PubMedCrossRefGoogle Scholar
  121. Pullen, R. A., Jenkins, J. A., Tickle, I. J., Wood, S. P., and Blundell, T. L., 1975, The relation of polypeptide hormone structure and flexibility to receptor binding: The relevance of X-ray studies on insulin, glucagon and human placental lactogen, Mol. Cell. Biochem. 8: 5–20.PubMedCrossRefGoogle Scholar
  122. Pullen, R. A., Lindsay, D. G., Wood, S. P., Tickle, I. J., Blundell, T. L., Wollmer, A., Krail, G., Brandenburg, D., Zahn, H., Gliemann, J., and Gammeltoft, S., 1976, Receptor-binding region of insulin, Nature 259: 369–373.PubMedCrossRefGoogle Scholar
  123. Raskin, P., 1979, Treatment of diabetes mellitus: The future, Metabolism 28: 780–796.PubMedCrossRefGoogle Scholar
  124. Rinderknecht, E., and Humbel, R. E., 1978a, The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin, J. Biol. Chem. 253: 2769–2775.PubMedGoogle Scholar
  125. Rinderknecht, E., and Humbel, R. E., 1978b, Primary structure of human insulin-like growth factor II, FEBS Letts. 89: 283–289.CrossRefGoogle Scholar
  126. Rosen, P., Ehrich, B., Junger, E., Bubenzer, H. J., and Kuhn, L., 1979, Binding and degradation of insulin by plasma membranes from bovine liver isolated by a large scale preparation, Biochem. Biophys. Acta. 587: 593–605.PubMedCrossRefGoogle Scholar
  127. Rosen, P., Simon, M., Reinauer, H., Brandenburg, D., Friesen, H. J., and Diaconescu, C., 1980a, Al-modified insulins: receptor binding and biological activity, in: Insulin. Chemistry, Structure and Function of Insulin and Related Hormones ( D. Brandenburg, and A. Wollmer, eds.), pp. 403–408, Walter de Gruyter and Co., Berlin.Google Scholar
  128. Rosen, P., Simon, M., Reinauer, H., Friesen, H. J., Diaconescu, C., an Brandenburg, D., 1980b, Binding of insulin to bovine liver plasma membrane: Use of insulin analogues modified at Al residues, Biochem. J. 186: 945–951.PubMedGoogle Scholar
  129. Rosenzweig, J. L., Havrankova, J., Lesniak, M. A., Brownstein, M., and Roth, J., 1980, Insulin is ubiqui- tous in extrapancreatic tissues of rats and humans, Proc. Natl. Acad. Sci. USA 77: 572–576.PubMedCrossRefGoogle Scholar
  130. Sakabe, N., Sakabe, K., and Sasaki, K., 1978, Insulin structure at I.2A resolution: Flexibility of local conformation and surrounding water molecules, in: Proinsulin, Insulin, C-Peptide ( S. Baba, T. Kaneko, and N., Yanaihara, eds.), pp. 73–80, Excerpta Medical, Amsterdam.Google Scholar
  131. Schlichtkrull, J., Brange, J., Christiansen, A. H., Hallund, O., Heding, L. G., and Jorgensen, K. H., 1972, Clinical aspects of insulin-antigenicity, Diabetes 21: 649–656.PubMedGoogle Scholar
  132. Schwabe, C., and Harmon, S. J., 1978, A comparative circular dichroism study of relaxin and insulin, Biochem Biophys. Res. Commun. 84: 374–380.PubMedCrossRefGoogle Scholar
  133. Schwabe, C., Steinetz, B., Weiss, G., Segaloff, A., McDonald, K., O’Byrne, E., Hochman, J., Camere, B., and Goldsmith, L., 1978, Relaxin, Rec. Prog. Horm. Res. 34: 123–211.PubMedGoogle Scholar
  134. Simkin, R. D., Cole, S. A., Ozawa, H., Magdoff-Fairchild, B., Eggena, P., Rudko, A., and Low, B. W., 1970, Precipitation and crystallization of insulin in the presence of lysozyme and salmine, Biochem. Biophys. Acta 200: 385–394.PubMedGoogle Scholar
  135. Simon, J., Freychet, P., and Rosselin, G., 1974, Chicken insulin—radioimmunological characterization and enhanced activity in rat fat cells and liver plasma membranes, Endocrinology 95: 1439–1449.PubMedCrossRefGoogle Scholar
  136. Simon, J., Freychet, P., Rosselin, G., and De Meyts, P., 1977, Enhanced binding affinity of chicken insulin in rat liver membranes and human lymphocytes: Relationship to the kinetic properties of the hormone-receptor interaction, Endocrinology 100: 115–121.PubMedCrossRefGoogle Scholar
  137. Snell, C. R., and Smyth, D. G., 1975, Proinsulin: A proposed 3-dimensional structure, J. Biol. Chem. 250: 6291–6295.PubMedGoogle Scholar
  138. Steiner, D. F., Clark, J. L., Nolan, C., Rubenstein, A. H., Margoliash, E., Acne, B., and Oyer, P. E., 1969, Proinsulin and the biosynthesis of insulin, Rec. Prog. Horm. Res. 25: 207–282.PubMedGoogle Scholar
  139. Steiner, D. F., Kemmler, W., Clark, J. L., Oyer, P. E., and Rubenstein, A. H., 1972, The biosynthesis of insulin, in: Handbook of Physiology (D. F. Steiner and N. Freinkel, eds.) Section 7, Endocrinology Volume 1, ( Waverly Press, Baltimore, pp. 175–198.Google Scholar
  140. Steiner, D., Wolfgang, K., Tager, H. S. and Peterson, J. D. (1974) Proteolytic processing in the biosynthesis of insulin and other proteins. Fed. Proc. 33: 2105–2115.PubMedGoogle Scholar
  141. Tager, H. S.,Markese, J., Kramer, K. B., Spiers, R. P., and Childs, C. N., 1976, Glucagon-like and insulin-like hormones of the insect neurosecretory system, Biochem. J. 156: 515–520.PubMedGoogle Scholar
  142. Tager, H., Given, B., Baldwin, D., Mako, M., Markese, J., Rubenstein, A., Olefsky, J., Kobayashi, M., Kolterman, O., and Poucher, R., 1979, A structurally abnormal insulin causing human diabetes, Nature 281: 122–125.PubMedCrossRefGoogle Scholar
  143. Tager, H., Thomas, N., Assoian, R., Rubenstein, A., Saekow, M., Olefsly, J., and Kaiser, E. T., 1980, Semisynthesis and biological activity of porcine (Leu B24) insulin and (Leu B25) insulin, Proc. Natl. Acad. Sci. USA 77: 3181–3185.PubMedCrossRefGoogle Scholar
  144. Ullrich, A., Shine, J., Chirgwin, J., Pictet, R., Tischer, E., Rutter, W. J., and Goodman, H. M., 1977, Rat insulin genes: construction of plasmids containing the coding sequences, Science 196: 1313–1319.PubMedCrossRefGoogle Scholar
  145. Van Noorden, S., and Falkmer, S., 1980, Gut-islet endocrinology—some evolutionary aspects. Invest. Cell. Pathol. 3,: 21–35.Google Scholar
  146. Vogt, H. -P., Wollmer, A., Naithani, V. K., and Zahn, H., 1976, The conformational potential of porcine proinsulin C-peptide, Hoppe Seylers Z. Physiol. Chem. 357: 107–116.PubMedCrossRefGoogle Scholar
  147. Waelbroeck, M., 1980, Thermodynamic analysis of insulin binding to its membrane receptor. D. Phil Thesis, Université Catholique De Louvain, Belgium.Google Scholar
  148. Waelbroeck, M., Van Obberghen, E., and De Meyts, P., 1979, Thermodynamics of the interaction of insulin with its receptor, J. Biol. Chem. 254: 7736–7740.PubMedGoogle Scholar
  149. Waldhausl, W. K., 1969, Treatment of diabetes mellitus: pathophysiological aspects and state of the art, in: Diabetes ( W. K. Waldhausl, ed.), pp. 10–22, Excerpta Medica, Amsterdam.Google Scholar
  150. Walter, H., Humbel, R. E., and Schwander, J., 1979, Separate determination of the two components of NSILA-S (IGF I and II) by specific radio-immunoassays (RIAS), in: International Congress Series No. 481; 10th Congress, International Diabetes Federation (W. Waldhausl and K. G. M. M. Alberte, eds.), p. 248, Abstr. No. 465, Excerpta Medica, Amsterdam.Google Scholar
  151. Watari, N., 1970, The correlative light and electron microscopy of the islets of Langerhans in the pancreas of some vertebrates, with special reference to the synthesis, storage and extrusion of the islet hormones, Gunma Symp. Endocrinol. 7: 125–150.Google Scholar
  152. Watari, N., 1974, Three-dimensional structure of crystalline insulin granules in B-cells of pancreatic islets, in: Proceedings of the 8th International Congress on Electron Microscopy, Canberra, II, 434–435.Google Scholar
  153. Weitzel, G., Oerlel, W., Rager, K., and Kemmler, W., 1969, Insulin. Vom-Truthuhn (Meleagris galloparo) Turkey insulin. Hoppe Seylers Z. Physiol. Chem. 350: 57–62.PubMedCrossRefGoogle Scholar
  154. Williams, J. R., 1922, A clinical study of the effects of insulin in severe diabetes, J. Metabol. Res. 2: 729–751.Google Scholar
  155. Williamson, K. L., and Williams, R. J. P., 1979, Conformational analysis by nuclear magnetic resonance: Insulin, Biochemistry 18: 5966–5972.PubMedCrossRefGoogle Scholar
  156. Wollmer, A., Fleishhauer, J., Strassburger, W., Thiele, H., Brandenburg, D., Dodson, G., and Mercola, D., 1977, Sidechain mobility and the calculation of tyrolsyl circular dichroism of proteins. Implications of a test with insulin and des-B 1 -phenylalanine insulin, Biophys. J. 20: 233–243.PubMedCrossRefGoogle Scholar
  157. Wood, S. P., 1976, The structure and biology of insulin. D.Phil. thesis, University of Sussex, U. K.Google Scholar
  158. Wood, S. P., Blundell, T. L., Wollmer, A., Lazarus, N. R., and Neville, R. W. J., 1975, The relation of conformation and association of insulin to receptor binding: X-ray and circular dichroism studies on bovine and hystricomorph insulins, Eur. J. Biochem. 55: 531–542.PubMedCrossRefGoogle Scholar
  159. Wood, S. P., Tickle, I. J., Blundell, T. L., Wollmer, A., and Steiner, D. F., 1978, Insulin polymorphism: Some physical and biological properties of rat insulins. Arch. Biochem. Biophys. 186: 175–183.PubMedCrossRefGoogle Scholar
  160. Yagi, Y., Maier, P., and Pressman, D., 1965, Antibodies against component polypeptide chains of bovine insulin, Science 147: 617–619.PubMedCrossRefGoogle Scholar
  161. Yalow, R. S., and Berson, S. A., 1964, Reactions of fish insulins to human insulin antiserum, N. Engl. J. Med. 270: 1171–1173.PubMedCrossRefGoogle Scholar
  162. Yu, N. -T., Liu, C. S., Culver, J., and O’Shea, D. C., 1972a, A preliminary Raman spectroscopic study of native zinc-insulin crystals, Biochim. Biophys. Acta 263: 1–6.PubMedGoogle Scholar
  163. Yu, N. -T., Liu, C. S., and O’Shea, D. C., 1972b, Laser Ramam spectroscopy and the conformation of insulin and proinsulin, J. Mol. Biol. 70: 117–132.PubMedCrossRefGoogle Scholar
  164. Yue, D. K., and Turtle, J. R., 1975, Antigenicity of “monocomponent” pork insulin in diabetic subjects, Diabetes 24: 625–632.PubMedCrossRefGoogle Scholar
  165. Yunev, O. A., Dmitrenko, L. V., and Ostrovskii, D. I., 1976, Isolation, purification and crystallization of avian and fish insulins, in: The Evolution of Pancreatic Islets. ( T. A. I. Grillo, L. G. Leibson and A. Epple, eds.) p. 335, Pergamon Press, Oxford.Google Scholar
  166. Zapf, J., Schoenle, E. and Froesch, E. R. (1978) Insulin-like growth factors I and II: Some biological actions and receptor binding characteristics of two purified constituents of nonsuppressible insulin-like activity of human serum. Eur. J. Biochem. 87: 285–296.PubMedCrossRefGoogle Scholar
  167. Zimmerman, A. E., Kells, D. I. C. and Yip, C. C. (1972) Physical and biological properties of guinea pig insulin. Biochem. Biophys. Res. Commun. 46: 2127–2133.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • J. E. Pitts
    • 1
  • M. Bajaj
    • 1
  1. 1.Laboratory of Molecular Biology, Department of CrystallographyBirkbeck CollegeLondonEngland

Personalised recommendations