Advertisement

Chemical Synthesis of Oligodeoxyribonucleotides: A Simplified Procedure

  • Robert L. Letsinger
Part of the Genetic Engineering book series (GEPM, volume 8)

Abstract

Synthetic oligodeoxyribonucleotides are useful tools in molecular biology. They may function as primers and templates in enzymatic synthesis (1,2), building blocks for in vitro enzymatic synthesis of genes (3, 4), probes for specified nucleotide sequences in DNA and RNA (5, 6), vehicles for site specific mutagenesis (7), elements in the tailored synthesis of polypeptides (8), and models for elucidating the structural (9,10), chemical (11), and biochemical (12,13) features of DNA. Although enzymatic procedures have been employed effectively in some cases (14,15) the methods of choice at present for synthesis of sequence specified oligodeoxyribonucleotides are chemical ones. Rapid progress in methodology has been made during the past few years, so it is now feasible for someone with relatively little chemical experience to synthesize biochemically useful fragments in a reasonable time. Moreover, several companies market machines that carry out operations in the elongation steps automatically. The present review summarizes salient aspects of the chemistry involved in the synthesis of oligodeoxyribonucleotides and presents a detailed protocol for one operationally simple procedure for building oligodeoxyribonucleotide chains.

Keywords

Site Specific Mutagenesis Phosphorus Trichloride Benzenesulfonyl Chloride Concentrate Ammonium Hydroxide Zinc Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I. and Khorana, E.G. (1971) J. Mol. Biol. 56, 341–361.PubMedCrossRefGoogle Scholar
  2. 2.
    Winter, G., Fields, S., Gait, M. and Brownlee, G. (1981) Nucleic Acids Res. 9, 237–245.PubMedCrossRefGoogle Scholar
  3. 3.
    Khorana, H.G. (1979) Science 203, 614–625.PubMedCrossRefGoogle Scholar
  4. 4.
    Edge, M.D., Greene, A.R., Heathcliffe, G.R., Meacock, P.A., Schuch, W., Scanlon, D.B., Atkinson, T.C., Newton, C.R. and Markham, A.F. (1981) Nature 292, 756–762.PubMedCrossRefGoogle Scholar
  5. 5.
    Wallace, R.B., Johnson, M.J., Hirose, T., Miyake, T., Kawashima, E.H. and Itakura, K. (1981) Nucleic Acids Res. 9, 879–894.PubMedCrossRefGoogle Scholar
  6. 6.
    Emblad, A., Josephson, S. and Palm, G. (1982) Nucleic Acids Res. 10, 3291–3301.CrossRefGoogle Scholar
  7. 7.
    Smith, M. and Gillam, S. (1981) in Genetic Engineering (Setlow, J.K. and Hollaender, A., eds.), Vol. 3, pp. 1–32, Plenum Press, New York, NY.Google Scholar
  8. 8.
    Itakura, K., Hirose, T., Crea, R., Rings, A., Heyneker, H.L., Bolivar, F. and Boyer, H.W. (1977) Science 198, 1056–1063.PubMedCrossRefGoogle Scholar
  9. 9.
    Drew, H., Takano, T., Tanaka, S., Itakura, K. and Dickerson, R.E. (1980) Nature 286, 567–573.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, A.J., Quigley, G.J., Kolpak, G.J., Crawford, J.L., van Boom, J.H., van der Marel, G. and Rich, A. (1979) Nature 282, 680–686.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu, F. and Yang, N.C. (1978) Biochemistry 17, 4865–4876.PubMedCrossRefGoogle Scholar
  12. 12.
    Khorana, H.G. (1968) Pure Appl. Chem. 17, 349–381.CrossRefGoogle Scholar
  13. 13.
    Goeddel, D.V., Yansura, D.G. and Caruthers, M.H. (1978) Proc. Nat. Acad. Sci. U.S.A. 75, 3578–3582.CrossRefGoogle Scholar
  14. 14.
    Gillam, S., Rottman, G., Jahnke, P. and Smith, M. (1977) Proc. Nat. Acad. Sci. U.S.A. 74, 96–100.CrossRefGoogle Scholar
  15. 15.
    Hinton, D.M., Baez, J.A. and Gumport, R.I. (1978) Biochemistry 17, 5091–5097.PubMedCrossRefGoogle Scholar
  16. 16.
    Schaller, H., Weimann, G., Lerch, B. and Khorana, H.G. (1963) J. Amer. Chem. Soc. 85, 3821–3827.CrossRefGoogle Scholar
  17. 17.
    Weber, H. and Khorana, H.G. (1972) J. Mol. Biol. 72, 219–249.PubMedCrossRefGoogle Scholar
  18. 18.
    Ti, G.S., Gaffney, B.L. and Jones, R.A. (1982) J. Amer. Chem. Soc. 104, 1316–1319.CrossRefGoogle Scholar
  19. 19.
    Matteucci, M.D. and Caruthers, M.H. (1981) J. Amer. Chem. Soc. 103, 3185–3191.CrossRefGoogle Scholar
  20. 20.
    Kohli, V., Blöcker, H. and Köster, H. (1980) Tetrahedron Lett. 2683–2686.Google Scholar
  21. 21.
    Tanaka, T. and Letsinger, R.L. (1982) Nucleic Acids Res. 10, 3249–3260.PubMedCrossRefGoogle Scholar
  22. 22.
    Köster, H., Kulikowski, K., Liese, T., Heikens, W. and Kohli, V. (1981) Tetrahedron 37, 363–369.CrossRefGoogle Scholar
  23. 23.
    Jones, S.S., Reese, C.B., Sibanda, S. and Ubasawa, A. (1981) Tetrahedron Lett. 22, 4755–4758.CrossRefGoogle Scholar
  24. 24.
    Gaffney, B.L. and Jones, R.A. (1982) Tetrahedron Lett. 23, 2257–2260.CrossRefGoogle Scholar
  25. 25.
    Watkins, B.E., Kiely, J.S. and Rapoport, H. (1982) J. Amer. Chem. Soc. 104, 5702–5708.CrossRefGoogle Scholar
  26. 26.
    Ogilvie, K.K., Nemer, M.J., Hakimelahi, G.H., Proba, Z.A. and Lucas, M. (1982) Tetrahedron Lett. 23, 2615–2618.CrossRefGoogle Scholar
  27. 27.
    Gilham, P.T. and Khorana, H.G. (1959) J. Amer. Chem. Soc. 81, 4647–4650.CrossRefGoogle Scholar
  28. 28.
    Letsinger, R.L. and Mahaderan, V. (1965) J. Amer. Chem. Soc. 87, 3526–3527.CrossRefGoogle Scholar
  29. 29.
    Letsinger, R.L. and Ogilvie, K.K. (1967) J. Amer. Chem. Soc. 89, 4801–4803.CrossRefGoogle Scholar
  30. 30.
    Letsinger, R.L., Caruthers, M.H., Miller, P.S. and Ogilvie, K.K. (1967) J. Amer. Chem. Soc. 89, 7146–7147.CrossRefGoogle Scholar
  31. 31.
    For another early phosphotriester method see Eckstein, F. and Rizk, I. (1967) Angew. Chem. Int. Ed. 6, 695–695, 949.CrossRefGoogle Scholar
  32. 32.
    It is interesting in retrospect that a phosphoryl protecting group was used in the first synthesis of a 3′-5′ dinucleoside phosphate: Michelson, A.M. and Todd, A.R. (1955) J. Chem. Soc 2632–2638.Google Scholar
  33. 33.
    Letsinger, R.L., Ogilvie, K.K. and Miller, P.S. (1969) J. Amer. Chem. Soc. 91, 3360–3365.CrossRefGoogle Scholar
  34. 34.
    Letsinger, R.L. and Ogilvie, K.K. (1969) J. Amer. Chem. Soc. 91, 3350–3355.CrossRefGoogle Scholar
  35. 35.
    Lohrmann, R. and Khorana, H.G. (1966) J. Amer. Chem. Soc. 88, 829–833.CrossRefGoogle Scholar
  36. 36.
    Katagiri, H., Itakura, K. and Narang, S.A. (1975) J. Amer. Chem. Soc. 97, 7332–7337.CrossRefGoogle Scholar
  37. 37.
    Stawinski, J., Hozumi, T., Narang, S.A., Bahl, C.P. and Win, R. (1977) Nucleic Acids Res. 4, 353–371.PubMedCrossRefGoogle Scholar
  38. 38.
    Reese, C.B., Titmas, R.C., Yau, L. (1978) Tetrahedron Lett. 30, 2727–2730.CrossRefGoogle Scholar
  39. 39.
    Jones, S.S., Rayner, B., Reese, C.B., Ubasawa, A. and Ubasawa, M. (1980) Tetrahedron 36, 307 5–3085.Google Scholar
  40. 40.
    Seth, A.K. and Jay, E. (1980) Nucleic Acids Res. 8, 5445–5459.PubMedCrossRefGoogle Scholar
  41. 41.
    Efimov, V.A., Reverdatto, S.V. and Chakhmakhcheva, O.G. (1982) Nucleic Acids Res. 10, 6675–6694.PubMedCrossRefGoogle Scholar
  42. 42.
    Reese, C.B. (1970) Colloques Internationaux du C. N. R. S. 182, 319–328.Google Scholar
  43. 43.
    Reese, C.B. and Zard, L. (1981) Nucleic Acids Res. 9, 4611–4626.PubMedCrossRefGoogle Scholar
  44. 44.
    Kraszewski, A., Stawinski, J. and Wiewiorowski, M. (1980) Nucleic Acids Res. 8, 2301–2305.PubMedCrossRefGoogle Scholar
  45. 45.
    Itakura, K., Katagiri, N., Bahl, C.P., Wightman, R.H. and Narang, S.A. (1975) J. Amer. Chem. Soc. 97, 7327–7332.CrossRefGoogle Scholar
  46. 46.
    Gough, G.R., Collier, K.J., Weith, H.L. and Gilham, P.T. (1979) Nucleic Acids Res. 7, 1955–1964.PubMedCrossRefGoogle Scholar
  47. 47.
    Duckworth, M.L., Gait, M.J., Goelet, P., Hong, G.F., Singh, M. and Titmas, R.L. (1981) Nucleic Acids Res. 9, 1691–1706.PubMedCrossRefGoogle Scholar
  48. 48.
    Broka, C., Hozumi, T., Arentzen, R. and Itakura, K. (1980) Nucleic Acids Res. 8, 5461–5471.PubMedCrossRefGoogle Scholar
  49. 49.
    Agarwal, K.L. and Riftina, F. (1978) Nucleic Acids Res. 5, 2809–2823.PubMedCrossRefGoogle Scholar
  50. 50.
    Letsinger, R.L., Finnan, J.L., Heavner, G.A. and Lunsford, W.B. (1975) J. Amer. Chem. Soc. 97, 3278–3279.CrossRefGoogle Scholar
  51. 51.
    Letsinger, R.L. and Lunsford, W.B. (1976) J. Amer. Chem. Soc. 98, 3655–3661.CrossRefGoogle Scholar
  52. 52.
    Finnan, J.L., Varshney, A. and Letsinger, R.L. (1980) Nucleic Acids Res. Sym. Ser. 7, 133–145.Google Scholar
  53. 53.
    Letsinger, R.L., Groody, E.P. and Tanaka, T. (1982) J. Amer. Chem. Soc. 104, 6805–6806.CrossRefGoogle Scholar
  54. 54.
    Ogilvie, K.K. and Pon, R.T. (1980) Nucleic Acids Res. 2105–2115.Google Scholar
  55. 55.
    Ogilvie, K.K. and Nemer, M.J. (1980) Can. J. Chem. 58, 1389–1397.CrossRefGoogle Scholar
  56. 56.
    Daub, G.W. and van Tamelen, E.E. (1977) J. Amer. Chem. Soc. 99, 3526–3528.CrossRefGoogle Scholar
  57. 57.
    Matteucci, M.D. and Caruthers, M.H. (1980) Tetrahedron Lett. 21, 719–722.CrossRefGoogle Scholar
  58. 58.
    Matteucci, M.D. and Caruthers, M.H. (1981) J. Amer. Chem. Soc. 103, 3185–3191.CrossRefGoogle Scholar
  59. 59.
    Ogilvie, K.K. and Nemer, M.J. (1980) Tetrahedron Lett. 21, 4159–4162.CrossRefGoogle Scholar
  60. 60.
    Adamiak, R.W., Biata, E., Grzeskowiak, K., Kierzek, R., Kraszewski, A., Markiewicz, W.T., Stawinski, J. and Wiewiorowski, M. (1977) Nucleic Acids Res. 4, 2321–2341.PubMedCrossRefGoogle Scholar
  61. 61.
    Letsinger, R.L. and Finnan, J.L. (1975) J. Amer. Chem. Soc. 97, 7197–7198.CrossRefGoogle Scholar
  62. 62.
    Beaucage, S.L. and Caruthers, M.H. (1981) Tetrahedron Lett. 22, 1859–1862.CrossRefGoogle Scholar
  63. 63.
    McBride, L.J. and Caruthers, M.H. (1983) Tetrahedron Lett. 24, 245–248.CrossRefGoogle Scholar
  64. 64.
    Merrifield, R.B. (1963) J. Amer. Chem. Soc. 85, 2149–2154.CrossRefGoogle Scholar
  65. 65.
    Letsinger, R.L. and Kornet, M.J. (1963) J. Amer. Chem. Soc. 85, 3045–3046.CrossRefGoogle Scholar
  66. 66.
    Letsinger, R.L. and Mahadevan, V. (1966) J. Amer. Chem. Soc. 88, 5319–5324.CrossRefGoogle Scholar
  67. 67.
    Gait, M.J. and Sheppard, R.C. (1977) Nucleic Acids Res. 4, 4391–4410.PubMedCrossRefGoogle Scholar
  68. 68.
    Duckworth, M.L., Gait, M.J., Goelet, P., Hong, G.F., Singh, M. and Titmas, R.C. (1981) Nucleic Acids Res. 7, 1691–1706.CrossRefGoogle Scholar
  69. 69.
    Narang, C.K., Brunfeldt, K. and Norris, K.E. (1977) Tetrahedron Lett., 18, 1819–1822.CrossRefGoogle Scholar
  70. 70.
    Miyoshi, K., Miyake, T., Hozumi, T. and Itakura, K. (1980) Nucleic Acids Res. 8, 5473–5489.PubMedCrossRefGoogle Scholar
  71. 71.
    Miyoshi, K., Arentzen, R., Huang, T. and Itakura, K. (1980) Nucleic Acids Res. 8, 5507–5517.PubMedCrossRefGoogle Scholar
  72. 72.
    Ito, H., Ike, Y., Ikuta, S. and Itakura, K. (1982) Nucleic Acids Res. 10, 1755–1769.PubMedCrossRefGoogle Scholar
  73. 73.
    Potapor, V.K., Veiko, V.P., Koroleva, O.N. and Shabarova, Z.A. (1979) Nucleic Acids Res. 6, 2041–2056.CrossRefGoogle Scholar
  74. 74.
    Crea, R. and Horn, T. (1980) Nucleic Acids Res. 8, 2331–2348.PubMedCrossRefGoogle Scholar
  75. 75.
    Chow, F., Kempe, T. and Palm, G. (1981) Nucleic Acids Res. 9, 2807–2817.PubMedCrossRefGoogle Scholar
  76. 76.
    Gough, G.R., Brunden, M.J. and Gilham, P.T. (1981) Tetrahedron Lett. 22, 4177–4180.CrossRefGoogle Scholar
  77. 77.
    Adams, S.P., Kavka, K.S., Wykes, E.J., Holder, S.B. and Gallupi, G.R. (1983) J. Amer. Chem. Soc. 105, 661–663.CrossRefGoogle Scholar
  78. 78.
    Kohli, V., Balland, A., Wintzerith, M., Sauerwald, R., Staub, A. and Lecocq, J.P. (1982) Nucleic Acids Res. 10, 7439–7448.PubMedCrossRefGoogle Scholar
  79. 79.
    Maniatis, T., Jeffrey, A. and van de Sande, H. (1975) Biochemistry 14, 3787–3794.PubMedCrossRefGoogle Scholar
  80. 80.
    Tomlinson, R.V. and Tener, G.M. (1963) Biochemistry 2, 697–702.PubMedCrossRefGoogle Scholar
  81. 81.
    Asteriadis, G.T., Armbruster, M.A. and Gilham, P.T. (1976) Anal. Biochem. 70, 64–74.PubMedCrossRefGoogle Scholar
  82. 82.
    Alvarado-Urbina, G., Sathe, G.M., Liu, W., Gillen, M.F., Duck, P.D., Bender, R. and Ogilvie, K.K. (1981) Science 214, 270–274.PubMedCrossRefGoogle Scholar
  83. 83.
    Tanaka, T. and Letsinger, R.L. (1982) Nucleic Acids Res. 10, 3249–3260.PubMedCrossRefGoogle Scholar
  84. 84.
    Miller, P.S., Cheng, D.M., Dreon, N., Jayaraman, K., Kan, L., Leutzinger, E.E., Pulford, S.M. and Ts’o, P.O.P. (1980) Biochemistry 19, 4688–4698.PubMedCrossRefGoogle Scholar
  85. 85.
    van Boom, J.H. and de Rooj, J. (1977) J. Chromatography 131, 169–177.CrossRefGoogle Scholar
  86. 86.
    Fritz, H.J., Belagaje, R., Brown, E.L., Fritz, R.H., Jones, R.A., Lees, R.F. and Khorana, H.G. (1978) Biochemistry 17, 1257–1267.PubMedCrossRefGoogle Scholar
  87. 87.
    McFarland, G.D. and Borer, P.N. (1979) Nucleic Acids Res. 7, 1067–1080.PubMedCrossRefGoogle Scholar
  88. 88.
    Hillen, W., Klein, R.D. and Wells, R.D. (1981) Biochemistry 20, 3748–3756.PubMedCrossRefGoogle Scholar
  89. 89.
    Tu, C.P. and Wu, R. (1980) Methods Enzymol. 65, 620–638.PubMedCrossRefGoogle Scholar
  90. 90.
    Maxam, A.M. and Gilbert, W. (1980) Methods Enzymol. 65, 499–560.PubMedCrossRefGoogle Scholar
  91. 91.
    Gerrard, W. and Wyville, P.L. (1949) Research (London) 2, 536–540.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Robert L. Letsinger
    • 1
  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations