Advertisement

Effects of Glycerol on Purine Metabolism in Rat Liver Cells

  • Christine Des Rosiers
  • Marcel Lalanne
  • Joan Willemot
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 165)

Abstract

Glycerol phosphorylation in liver cells produces a rapid depletion of inorganic phosphate (Pi) and adenine nucleotides (1–3). These effects are similar to those produced by fructose (3,4). In addition, fructose administration to mice or humans also causes an increase in purine synthesis de novo (5–7).

Keywords

Adenine Nucleotide Purine Nucleoside Purine Metabolism Purine Nucleotide Purine Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.B. Burch, O.H. Lowry, L. Meinhardt, P. Max Jr., and K. Chyu, Effect of fructose, dihydroxyacetone, glycerol, and glucose on metabolites and related compounds in liver and kidney, J. Biol. Chem. 245: 2092–2102 (1970).PubMedGoogle Scholar
  2. 2.
    H.F. Woods and H.A. Krebs, The effect of glycerol and dihydroxyacetone on hepatic adenine nucleotides, Biochem. J. 132: 55–60 (1973).PubMedGoogle Scholar
  3. 3.
    M. Erecinska, M. Stubbs, Y. Miyata, C.M. Ditre, and D.F. Wilson, Regulation of cellular metabolism by intracellular phosphate, Biochim. Biophys. Acta 462: 20–35 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Van den Berghe, Metabolic effects of fructose in the liver, Curr. Top. Cell. Regul. 13: 97–135 (1978).PubMedGoogle Scholar
  5. 5.
    B.T. Emmerson, Effect of oral fructose on urate production, Ann. Rheum. Dis. 33: 276–280 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    K.O. Raivio, M.A. Becker, L.J. Meyer, M.L. Greene, G. Nuki, and J.E. Seegmiller, Stimulation of human purine synthesis de novo by fructose infusion, Metabolism 24: 861–869 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Itakura, R.L. Sabina, P.W. Heald, and E.W. Holmes, Basis for the control of purine biosynthesis by purine ribonucleotides, J. Clin. Invest. 67: 994–1002 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Van den Berghe, M. Bronfman, R. Vanneste, and H.-G. Hers, The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase, Biochem. J. 162: 601–609 (1977).PubMedGoogle Scholar
  9. 9.
    G. Van den Berghe, F. Bontemps, and H.-G. Hers, Purine catabolism in isolated rat hepatocytes. Influence of coformycin, Biochem. J. 188: 913–920 (1980).PubMedGoogle Scholar
  10. 10.
    C. Des Rosiers, M. Lalanne, and J. Willemot, Purine synthesis de novo and its regulation in rat hepatocytes, Can. J. Biochem. 58: 599–606 (1980).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Christine Des Rosiers
    • 1
  • Marcel Lalanne
    • 1
  • Joan Willemot
    • 1
  1. 1.Département de Biochimie, Faculté de MédecineUniversité LavalCanada

Personalised recommendations