Advertisement

Pyrimidine Metabolism in Rat Brain Cortex and Liver

  • G. J. Peters
  • J. H. Veerkamp
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 165)

Abstract

Pyrimidine nucleotide synthesis proceeds via a salvage pathway and a de novo pathway. In rat liver all enzymes involved in UMP syn­thesis from bicarbonate have a considerable activity (1–4), but in rat brain not all enzymes of the OA-pathway (orotic acid) have been demonstrated, although a significant incorporation of [14C]bicarbo­nate into OA was found (5). A considerable activity of uridine kinase is present in brain (6,7). OA and uracil can not pass the blood-brain barrier (8), but uridine can be taken up (9). In this study we com­pare the de novo and salvage pathways by measuring the incorporation of aspartate into OA and assaying the activities of DHOdehydrogenase (dihydroorotic acid dehydrogenase), OPRT (orotic acid phosphoribosyl­transferase), ODC (orotidylate decarboxylase), uridine kinase and uridine phosphorylase.

Keywords

Brain Cortex Salvage Pathway Orotic Acid Considerable Activity Pyrimidine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hager SE & Jones ME (1967) J. Biol. Chem. 242, 5674–5680PubMedGoogle Scholar
  2. 2.
    Yip MCM & Knox WE (1970) J. Biol. Chem. 245, 2199–2204PubMedGoogle Scholar
  3. 3.
    Pausch J, Wilkening J, Nowack J & Decker K (1975) Eur. J. Biochem. 53, 349–356PubMedCrossRefGoogle Scholar
  4. 4.
    Aoki T, Morris HP & Weber G (1982) J. Biol. Chem. 257, 432–438Google Scholar
  5. 5.
    Tremblay GL, Jimenez U & Crandall DE (1976) J. Neurochem. 26, 57–64PubMedGoogle Scholar
  6. 6.
    Appel SH & Silberberg DH (1968) J. Neurochem. 15, 1437–1443PubMedCrossRefGoogle Scholar
  7. 7.
    Krenitsky TA, Miller RL & Fyfe JA (1974) Biochem. Pharmac. 23, 170–172CrossRefGoogle Scholar
  8. 8.
    Hogans AF, Guroff G & Udenfriend S (1971) J. Neurochem. 18, 1688–1710CrossRefGoogle Scholar
  9. 9.
    Nakagawa S & Guroff G (1973) J. Neurochem. 20, 1143–1149CrossRefGoogle Scholar
  10. 10.
    Tax WJM, Peters GJ & Veerkamp JH (1979) Int. J. Biochem. 10, 7–10PubMedCrossRefGoogle Scholar
  11. 11.
    Schnaitman C & Greenawalt JW (1968) J. Cell Biol. 38, 158–175PubMedCrossRefGoogle Scholar
  12. 12.
    Chan TL, Greenawalt TL & Pedersen PL (1970) J. Cell Biol. 45, 291–304PubMedCrossRefGoogle Scholar
  13. 13.
    Kensler TW, Cooney DA, Jayaram HN, Schaeffer C & Choie DD (1981) Anal. Biochem. 117, 315–319PubMedCrossRefGoogle Scholar
  14. 14.
    Chen J-J & Jones ME (1976) Arch. Biochem. Biophys. 176, 82–90PubMedCrossRefGoogle Scholar
  15. 15.
    Calcagnotto AM, Villela.GG & Ribiero CP (1980) IRCS Med. Sci.Biochem. 8, 904–905Google Scholar
  16. 16.
    Harley EH & Losman MJ (1981) Int. J. Biochem. 13, 247–249PubMedCrossRefGoogle Scholar
  17. 17.
    Moyer JD, Oliver JT & Handschumacher RE (1981) Cancer Res. 41, 3010–3017PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • G. J. Peters
    • 1
  • J. H. Veerkamp
    • 1
  1. 1.Department of BiochemistryUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations