Relativistic Effects in Many-Body Systems

  • Lloyd ArmstrongJr.
Conference paper


The introduction of relativity into many-body systems produces a number of new effects, and a number of new problems. First among the latter might be the difficulty in defining what a “relativistic effect” might be. As we shall discuss below, relativity in a many-body system necessarily implies the use of QED. Thus, any attempt to differentiate between “relativistic effects” and “QED effects” must be rather arbitrary, and not necessarily desirable. At the opposite extreme, many “relativistic effects” can be approximately incorporated into nonrelativistic calculations through introduction of familiar operators such as spin-orbit, spin-other-orbit, etc., into the Schrodinger equation. Thus the wisest procedure seems to be to not specifically define “relativistic effects” at the beginning, but rather to plunge right in and let the discussion itself provide a rough definition.


Relativistic Effect Dirac Equation Oscillator Strength Body Equation Lamb Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Desclaux, Comp. Phys. Comm. 9, 31 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, and N. C. Pyper, Comp. Phys. Comm. 21, 207 (1980); B. J. McKenzie, I. P. Grant, and P. H. Norrington, Comp. Phys. Comm. 21, 233 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    Recent reviews of the experimental situation have been given, for highly ionized atoms by W. Martin, and for inner shell energies, by R. D. Deslattes and E. G. Kessler. Both reviews can be found in the Proceedings of the Workshop on the Foundations of the Relativistic Theory of Atomic Structure, ed by H. G. Berry, K. T. Cheng, W. R. Johnson, and Y.-K. Kim, Argonne National Lab. Report ANL 80–126 (1980)Google Scholar
  4. 4.
    P. A. M. Dirac Quantum Mechanics (Oxford University Press, London) 4th ed 1958.MATHGoogle Scholar
  5. 5.
    R. H. Garstang and D. F. Mayers, Proc. Camb. Phil. Soc. 62, 777 (1966); V. M. Burke and I. P. Grant, Proc. Phys. Soc. 90, 297 (1967)Google Scholar
  6. 6.
    G. E. Brown and D. G. Ravenhall, Proc. Roy Soc. London A 208, 532 (1951)MathSciNetADSGoogle Scholar
  7. 7.
    G. E. Brown, Philos. Mag. 43, 467 (1952) J. Sucher, Phys. Rev. A 22, 348 (1980) M. H. Mittleman, Phys. Rev. A 24, 1167 (1981)MATHGoogle Scholar
  8. 8.
    A. I. Akheizer and V. B. Berestetskii, Quantum Electrodynamics ( Interscience, New York ) 1965Google Scholar
  9. 9.
    I. P. Grant and B. J. McKenzie, J. Phys B 13, 2671 (1980)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    P. J. Mohr, Ann. Phys. (NY) 88, 52 (1974); Phys. Rev. Lett. 34, 1050 (1975)ADSCrossRefGoogle Scholar
  11. 11.
    L. N. Fullerton and G. A. Rinker, Jr., Phys. Rev. A 13, 1283 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    J. P. Desclaux, K. T. Cheng, and Y.-K. Kim, J. Phys. B 12, 3819 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    K. T. Cheng and W. R. Johnson, Phys. Rev. A 14, 1943 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    H. Promakoff and T. Holstein, Phys. Rev. 55, 218 (1938); C. Chanmugam and S. S. Schweber, Phys. Rev. 1369 (1970) M. H. Mittleman, Phys. Rev. A4, 893 (1971)Google Scholar
  15. 15.
    M. H. Mittleman, as reported at the Workshop on the Foundation of the Relativistic Theory of Atomic Structure, Argonne National Lab.; Dec. 4–5, 1980Google Scholar
  16. 16.
    S. Manson, Private communicationGoogle Scholar
  17. 17.
    C. P. Wood and N. C. Pyper, Mol. Phys. 41., 149 (1980); N. C. Pyper, S. J. Rose, and I. P. Grant, J. Phys. B 15, 1319 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    K.-N. Huang, Y.-K. Kim, K. T. Cheng, and J. P. Desclaux, Phys. Rev. Lett. 48, 1245 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    L. Armstrong, Jr., W. R. Fielder and D. L. Lin, Phys. Rev. A 14, 1114 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    I. P. Grant, J. Phys. B 7, 1458 (1974)ADSCrossRefGoogle Scholar
  21. 21.
    See eg, M. Vajed-Samii, S. N. Ray, T. P. Das, and J. Andriessen, Phys. Rev. A 20, 1787 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    S. P. Carter and H. P. Kelly, Phys. Rev. Lett. 42, 966 (1979); A. M. Martensson, E. M. Henley, and L. Wilets, Phys. Rev. A 24, 308 (1981); M. J. Harris, L. E. Loving, and P. G. H. Sandars, J. Phys. B 11, L749 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    P. J. Möhr, given at the NATO Advanced Institute on Relativistic Effects in Atoms, Molecules, and Solids, Vancouver, BC., August 1981. To be published in the Proceedings thereof (Plenum )Google Scholar
  24. 24.
    K.-N. Huang, M. Aoyagi, M. H. Chen, B. Crasemann and H. Mark, Atomic Data and Nuclear Data Tables 18, 243 (1976)ADSCrossRefGoogle Scholar
  25. 25.
    J. A. Bearden and A. F. Burr, Rev. Mod. Phys. 39, 125 (1967); R. D. Deslattes, E. G. Kessler, Jr., L. Jacobs, and W. Schitz, Phys. Lett. 71A, 411 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    J. Reader and G. Luther, Phys. Rev. Lett. 45, 609 (1980)ADSCrossRefGoogle Scholar
  27. 27.
    P. Shorer and A. Dalgarno, Phys. Rev. A 16, 1502 (1977); P. Shorer, Phys. Rev. A J8, 1060 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Lloyd ArmstrongJr.
    • 1
    • 2
  1. 1.Physics DivisionNational Science FoundationUSA
  2. 2.Department of PhysicsJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations