Doppler Narrowing and Collision-Induced Zeeman Coherence in Four-Wave Light Mixing

  • N. Bloembergen
  • M. C. Downer
  • L. J. Rothberg


Consider a three-dimensional four-wave light mixing geometry as schematically shown in Fig. 1. The four beams all travel in the near-forward direction. Two beams have a frequency ω1, which is offset by a fixed amount Δ = ω1 - ω3S,3P from a resonant line of the Na atom. Their wave vectors, k 1 and k 1′, respectively, lie in the vertical plane. A third beam, at frequency ω2, has a wave vector k 2 in the horizontal plane. In four-wave mixing, the generation of a new beam in the horizontal plane is observed with wave vector k 1 + k 1 ′ - k 2 and frequency 2ω1 - ω2. As the frequency ω2 is varied over an interval of about 40 cm−1 around the value of ω1, seven resonances in the intensity of the new beam, J(2ω1 - ω2), have been observed by Prior et al.1 in mixtures of Na vapor and helium. These are schematically indicated in Fig. 2. Four of these are familiar one-photon resonant enhanced four-wave mixing processes. The remaining three resonances, at ω2 = ω1, and at ω2 = ω1 ± 17 cm−1, are only observable in the presence of collisions, which can be controlled by the pressure of helium buffer gas.


Central Resonance Raman Resonance Coherent Model Zeeman Sublevel Collisional Narrowing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Prior, A. R. Bogdan, M. Dagenais and N. Bloembergen, Phys. Rev. Lett. 46: 111 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    N. Bloembergen, A. R. Bogdan and M. C. Downer, in: “Laser Spec troscopy V,” A. R. W. McKellar, T. Oka and B. P. Stoicheff, eds., Springer, Heidelberg (1981), p. 157.Google Scholar
  3. 3.
    G. Grynberg, loc. cit. p. 174.Google Scholar
  4. 4.
    A. R. Bogdan, M. C. Downer and N. Bloembergen, Phys. Rev. A 24: 623 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. J. Druet, J. P. Taran and Ch. J. Borde, J. de Phys. (Paris) 40: 819 (1979).CrossRefGoogle Scholar
  6. 6.
    N. Bloembergen, E. M. Purcell and R. V. Pound, Phys. Rev. 73: 679 (1948).ADSCrossRefGoogle Scholar
  7. 7.
    R. H. Dicke, Phys. Rev. 89: 472 (1953).ADSCrossRefGoogle Scholar
  8. 8.
    S. G. Rautian and I. I. Sobelman, Sov. Phys. Uspekhi 9: 701 (1967).ADSCrossRefGoogle Scholar
  9. 9.
    A. R. Bogdan, M. C. Downer and N. Bloembergen, Opt. Lett. 6: 348 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    W. Happer, Rev. Mod. Phys. 44: 169 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    D. G. Steel, J. F. Lam and R. A. McFarlane, see ref. 2, p. 260.Google Scholar
  12. 12.
    W. Happer and A. C. Tam, Phys. Rev. A 16: 1877 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    T. W. Mossberg, F. Whittaker, R. Kachru and S. R. Hartmann, Phys. Rev. A 22: 1962 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    J. R. Andrews, R. M. Hochstrasser, R. M. Trommsdorff, Chem. Phys. 62: 87 (1981).CrossRefGoogle Scholar
  15. 15.
    T. Yajima, H. Souma and Y. Ishida, Phys. Rev. A 17: 324 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • N. Bloembergen
    • 1
  • M. C. Downer
    • 1
  • L. J. Rothberg
    • 1
  1. 1.Division of Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations