The Quantum Hall Effect

  • Klaus v. Klitzing
Conference paper


Basically, the quantum Hall effect (QHE) has nothing to do with atomic physics. Semiconductors are normally used to observe this quantum phenomenon, and the 1023 atoms per cubic centimeter of a semiconductor represent such a complicated system of interacting atoms that its electronic properties are normally described by phenomenological quantities and cannot be deduced from the properties of the isolated atoms. Nevertheless, our measurements on semiconductors demonstrate that the quantity h/e2 (h = Planck constant, e = elementary charge) can be determined with an uncertainty of less than 10−6. Since the fine-structure constant α is directly proportional to e2/h (the proportional constant depends mainly on the well known velocity of light c), one can use the QHE for the determination of α with an uncertainty smaller than that resulting from high-precision measurements of the fine-structure and hyperfine-structure splitting of a hydrogen atom.


Landau Level Anomalous Magnetic Moment Quantum Hall Effect Fundamental Constant Lamb Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.V. Klitzing, 1982, Two-dimensional systems: A method for the determination of the fine-structure constant, Surf.Sci. 113, 1.ADSCrossRefGoogle Scholar
  2. [2]
    A. Sommerfeld, 1916, Annalen der Physik (Leipzig) 51 1.ADSCrossRefGoogle Scholar
  3. [3]
    E.R. Cohen and B.N. Taylor, 1973, The 1973 least-square adjustment of the fundamental constants, J.Phys.Chem.Ref. Data 2, 663.Google Scholar
  4. [4]
    D.A. Andrews and G. Newton, 1976, Radio frequency atomic beam measurement of the Lamb-shift interval in hydrogen, Phys.Rev.Letters 37, 1254.ADSCrossRefGoogle Scholar
  5. [5]
    S.R. Lundeen and F.M. Pipkin, 1981, Measurement of the Lamb- shift in hydrogen, n = 2, Phys.Rev.Letters 46, 232.ADSCrossRefGoogle Scholar
  6. [6]
    Yu.L.Sokolov, 1982, Measurement of the Lamb shift in hydrogen, in Proc. of the Second Int.Conf. on Precision Measurements and Fundamental Constants, Eds B.V. Taylor and W.D. Phillips, Nat. Bur. Std. (US), Spec.Publ. 617Google Scholar
  7. [7]
    S.L. Kaufman, W.E. Lamb, K.R. Lea, and M. Leventhal, 1971, Measurement of the 22S1/2– 22P3/2Intervai Interval in Atomic Hydrogen, Phys. Rev. A 4, 2128.Google Scholar
  8. [8]
    T.W. Shyn, T. Rebane, R.T. Robiscoe, and W.L. Williams, 1971, Measurement of the 22S1/2– 22P3/2 ener§y separation (ΔE - S) in hydrogen (n = 2), Phys. Rev. A 3, 116.CrossRefGoogle Scholar
  9. [9]
    B.L. Cosens and T.V. Vorburger, 1970, Remeasurement of the 22S1/2– 22P3/2 splitting in atomic hydrogen, Phys. Rev. A 2, 16.Google Scholar
  10. [10]
    K.A. Safinya, K.K. Chan, S.R. Lundeen, and F.M. Pipkin, 1980, Measurement of the 22S1/2– 22P3/2 fine-structure interval in atomic hydrogen, Phys.Rev.Letters 45, 1934.ADSCrossRefGoogle Scholar
  11. [11]
    L. Essen, R.W. Donaldson, M.J. Bangham, and E.G. Hope, 1971, Frequency of the hydrogen maser, Nature 229, 110.ADSCrossRefGoogle Scholar
  12. [12]
    E. de Rafael, 1971, The hydrogen hyperfine structure and inelastic electron-proton scattering experiments, Phys. Lett. 37 B, 201.Google Scholar
  13. [13]
    V.W. Hughes, 1982, Precision exotic atom spectroscopy, in Proc. of the Second Int.Conf. on Precision Measurements and Fundamental Constants, Eds B.N. Taylor and W.D. Phillips, Natl. Bur. Std. (US), Spec. Publ. 617.Google Scholar
  14. [14]
    R.S. van Dyck, P.B. Schwinberg, and H.G. Dehmelt, 1979, Progress in the electron spin anomaly experiment, Bull.Am. Phys.Soc. 24, 758.Google Scholar
  15. [15]
    P.B. Schwinberg, R.S. van Dyck, and H.G. Dehmelt, 1982, Comparison of the positron and electron spin anomalies, in Proc. of the Second Int.Conf. on Precision Measurements and Fundamental Constants, Eds B.N. Taylor and W.D. Phillips, Natl. Bur. Std. (US), Spec. Publ. 617.Google Scholar
  16. [16]
    T. Kinoshita and W.B. Lindquist, 1981, Eight-order anomalous magnetic moment of the electron, Phys.Rev.Letters, 47, 1573.ADSCrossRefGoogle Scholar
  17. [17]
    K. v.Klitzing, G. Dorda, and M.Pepper, 1980, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Letters 45, 494.Google Scholar
  18. [18]
    for a review see: F. Stern, 1974, Quantum properties of surface space-charge layers, Crit.Rev.Solid State Sci. 4, 499.Google Scholar
  19. [19]
    D.C. Tsui, A.C. Gossard, B.F. Field, M.E. Cage, and R.F. Dziuba, 1982, Determination of the fine-structure constant using GaAs-A1xGA1-xAs heterostructures, Phys.Rev.Letters 48, 3.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Klaus v. Klitzing
    • 1
  1. 1.Physik-DepartmentTechnischen Universität MünchenGarchingGermany

Personalised recommendations