Skip to main content

Impact of Atomic Physics on Fundamental Constants

  • Conference paper
  • 235 Accesses

Abstract

This report offers one experimentalist’s outlook on the constants area especially from the perspective of atomic physics. There are many recent reviews of selected areas of such work in addition to the well-known periodic overall studies including least squares adjustments. My intent is neither to offer the scientific depth of the specialized reviews nor to even approach the technical scope of an overall adjustment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The next major iteration of the continuing process is due to appear in the near future through the efforts of B.N. Taylor and E.R. Cohen under the aegis of the CODATA Task Group on Fundamental Constants. Its predecessor is to be found in E.R. Cohen and B.N. Taylor, Jour. Phys. Chem. Ref. Data 2, 663 (1973).

    Google Scholar 

  2. F.K. Richtmyer, Science 75, 1 (1932).

    Article  ADS  Google Scholar 

  3. Last year’s Nobel Lectures represent a convenient point of departure, V.L. Fitch, Science 212, 989 (1981); J.W. Cronin, ibid., 1221.

    Google Scholar 

  4. There are many alternative perspectives on this area among which the reader may wish to examine (titles are indicated for guidance): J.-M. Levy-Leblond, “On the Conceptual Nature of the Physical Constants”, Revista del Nuovo Cimento 7 Nr. 2, pp. 187–214 (1977). Kastler and P. Grivet, “The Measurement of Fundamental Constants (Metrology) and its Effect on Scientific and Technical Progress”, in Atomic Masses and Fundamental Constants 5, J.H. Sanders and A.H. Wapstra, Eds., Plenum Press, N.Y. (1976), pp. 1–23. A.H. Cook, “Standards of Measurement and the Structure of Physical Knowledge”, Contemporary Physics 18, No. 4, pp. 393–409 ( 1977 ). General guides to the field have been rare. The most recent is that due to B. Petley, “The Fundamental Physical Constants and the Frontier of Measurement,” Adam Hilger (London), (1983).

    Google Scholar 

  5. See, eg, E.R. Cohen and J.W.M. DuMond, Rev. Mod. Phys. 37, 537 (1965).

    Article  ADS  Google Scholar 

  6. B.N. Taylor, W.H. Parker and D.N. Langenberg, Rev. Mod. Phys. 41, 375 (1969).

    Article  ADS  Google Scholar 

  7. I refer here to independent exercises in optical interferometry designed to establish vacuum wavelength (frequency) ratios between CH4 and I2 stabilized HeNe lasers: H.P. Layer, R.D. Deslattes and W.G. Schweitzer, Jr., Appl. Opt. 15, 734 (1976). W.R.C. Rowley, BIPM document, CCDM/824. G. Bönsch, PTB, Jahresbericht 1979, p. 135.

    Google Scholar 

  8. E.R. Williams and P.T. Olsen, Phys. Rev. Lett. 42, 1575 (1979); E.R. Williams, P.T. Olsen and W.D. Phillips, Proceedings of Precision Measurement and Fundamental Constants-II, B.N. Taylor and W.D. Phillips, Eds., U.S. G.P.O., in press.

    Google Scholar 

  9. B.P. Kibble and G.J. Hunt, Metrologia 15, 5–30 (1979).

    Article  ADS  Google Scholar 

  10. E.R. Williams and P.T. Olsen, IEEE Trans. Instrum. Meas. IM-27, 467 (1978).

    Google Scholar 

  11. G.L. Greene, Metrologia 17, 83 (1981).

    Article  ADS  Google Scholar 

  12. W. Chiao, R. Liu and P. Shen, IEEE Trans Instr. Meas. IM-29, 238 (1980).

    Google Scholar 

  13. P.T. Olsen, W.D. Phillips and E.R. Williams, J. Res. NBS 85, 257 (1980).

    Google Scholar 

  14. V.E. Bower and R.S. Davis, J. Res. NBS 85, 175 (1980). See also: V.E. Bower, R.S. Davis, T.J. Murphy, P.J. Paulsen, J.W. Gramlich and L.J. Powell, J. Res. NBS 87, 21 (1982).

    Google Scholar 

  15. Background in this area has been reviewed: R. Deslattes, “The Avogadro Constant” in Annual Reviews of Physical Chemistry 31, B.S. Rabinovitch, Ed., Annual Reviews, Inc., Palo Alto, USA (1980), p. 435.

    Google Scholar 

  16. B.W. Petley, “Electrical Metrology and the Fundamental Constant” in Metrology and Fundamental Constants Course 68 International School of Physics Enrico Fermi, A. Ferro Milone, P. Giacomo and S. Leschuitta, Ed., North Holland, Amsterdam, 1980, p. 358.

    Google Scholar 

  17. B. Cabrerra, S. Benjamin and J.T. Anderson, Physica 107B, 19 (1981).

    Google Scholar 

  18. J.C. Gallop, Jour. Phys. B 11, L93 (1978).

    Article  ADS  Google Scholar 

  19. K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  20. E.G. Kessler, Jr., Phys. Rev. A 7, 408 (1973).

    Article  ADS  Google Scholar 

  21. T.W. Hansch, M.H. Nayfeh, S.A. Lee, S.M. Curry and I.S. Shahin, Phys. Rev. Lett. 32, 1336 (1974).

    Article  ADS  Google Scholar 

  22. C. Wieman and T.W. Hansch, Phys. Rev. A 22, 192 (1980).

    Article  ADS  Google Scholar 

  23. S.R. Amin, C.D. Caldwell and W. Lichten, Phys. Rev. Lett. 47, 1234 (1981).

    Article  ADS  Google Scholar 

  24. K. Evenson, J.S. Wells, F.R. Petersen, B.L. Danielsen and G.W. Day, Appl. Phys. Lett. 22, 192 (1973).

    Article  ADS  Google Scholar 

  25. C.R. Pollock, D.A. Jennings, F.R. Petersen, R.E. Drullinger, E.C. Beaty, J.S. Wells, J.L. Hall, H.P. Layer and K.M. Evenson, to be published.

    Google Scholar 

  26. The CCDM recommends that the metre be defined as follows: “The metre is the length of the path traveled by light in vacuum during the fraction 1/299 792 458 of a second.”

    Google Scholar 

  27. O.R. Wood II, C.K.N. Patel, D.E. Murnick, E.T. Nelson, M. Leventhal, H.W. Kugel and Y. Niv, Phys. Rev. Lett. 46, 398 (1982).

    Article  ADS  Google Scholar 

  28. P.J. Mohr, Phys. Rev. Lett. 34, 1050 (1975).

    Article  ADS  Google Scholar 

  29. G.W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).

    Article  ADS  Google Scholar 

  30. Participants were: P. Richard, M. Stockley and Redo Mann (Kansas State), R. Deslattes, P. Cowan and K.-H. Schartner (NBS), B. Johnson and K. Jones (BNL).

    Google Scholar 

  31. E.G. Kessler, Jr., R.D. Deslattes, D. Girard-Vernhet, W. Schwitz, L. Jacobs and O. Renner, Physical Review A (in press).

    Google Scholar 

  32. S. Chu and A.P. Mills, Jr., Phys. Rev. Lett. 48, 1333 (1982).

    Article  ADS  Google Scholar 

  33. B. Edlen, Repts. Prog. Phys. XXVI, 181 (1963).

    Google Scholar 

  34. G. Murray, R.L. Graham and J.S. Geiger, Nucl. Phys. 63, 177 (1965).

    Article  Google Scholar 

  35. For a discussion of use of mass differences, see for example, R.G. Helmer, P.H.M. van Assehe and C. vander Leun, Atomic Data and Nuclear Data Tables 24, 39 (1979).

    Google Scholar 

  36. R.D. Deslattes, E.G. Kessler, Jr., W.C. Sauder and A. Henins, Annals of Phys. 129, 378 (1980).

    Article  ADS  Google Scholar 

  37. S. Chu and A.P. Mills, Jr., Phys. Rev. Lett. 48, 1333 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this paper

Cite this paper

Deslattes, R.D. (1983). Impact of Atomic Physics on Fundamental Constants. In: Lindgren, I., Rosén, A., Svanberg, S. (eds) Atomic Physics 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4550-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4550-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4552-7

  • Online ISBN: 978-1-4684-4550-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics