Impact of Atomic Physics on Fundamental Constants

  • Richard D. Deslattes


This report offers one experimentalist’s outlook on the constants area especially from the perspective of atomic physics. There are many recent reviews of selected areas of such work in addition to the well-known periodic overall studies including least squares adjustments. My intent is neither to offer the scientific depth of the specialized reviews nor to even approach the technical scope of an overall adjustment.


Calculable Spectrum Atomic Physic Fundamental Constant Lamb Shift Optical Interferometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The next major iteration of the continuing process is due to appear in the near future through the efforts of B.N. Taylor and E.R. Cohen under the aegis of the CODATA Task Group on Fundamental Constants. Its predecessor is to be found in E.R. Cohen and B.N. Taylor, Jour. Phys. Chem. Ref. Data 2, 663 (1973).Google Scholar
  2. 2.
    F.K. Richtmyer, Science 75, 1 (1932).ADSCrossRefGoogle Scholar
  3. 3.
    Last year’s Nobel Lectures represent a convenient point of departure, V.L. Fitch, Science 212, 989 (1981); J.W. Cronin, ibid., 1221.Google Scholar
  4. 4.
    There are many alternative perspectives on this area among which the reader may wish to examine (titles are indicated for guidance): J.-M. Levy-Leblond, “On the Conceptual Nature of the Physical Constants”, Revista del Nuovo Cimento 7 Nr. 2, pp. 187–214 (1977). Kastler and P. Grivet, “The Measurement of Fundamental Constants (Metrology) and its Effect on Scientific and Technical Progress”, in Atomic Masses and Fundamental Constants 5, J.H. Sanders and A.H. Wapstra, Eds., Plenum Press, N.Y. (1976), pp. 1–23. A.H. Cook, “Standards of Measurement and the Structure of Physical Knowledge”, Contemporary Physics 18, No. 4, pp. 393–409 ( 1977 ). General guides to the field have been rare. The most recent is that due to B. Petley, “The Fundamental Physical Constants and the Frontier of Measurement,” Adam Hilger (London), (1983).Google Scholar
  5. 5.
    See, eg, E.R. Cohen and J.W.M. DuMond, Rev. Mod. Phys. 37, 537 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    B.N. Taylor, W.H. Parker and D.N. Langenberg, Rev. Mod. Phys. 41, 375 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    I refer here to independent exercises in optical interferometry designed to establish vacuum wavelength (frequency) ratios between CH4 and I2 stabilized HeNe lasers: H.P. Layer, R.D. Deslattes and W.G. Schweitzer, Jr., Appl. Opt. 15, 734 (1976). W.R.C. Rowley, BIPM document, CCDM/824. G. Bönsch, PTB, Jahresbericht 1979, p. 135.Google Scholar
  8. 8.
    E.R. Williams and P.T. Olsen, Phys. Rev. Lett. 42, 1575 (1979); E.R. Williams, P.T. Olsen and W.D. Phillips, Proceedings of Precision Measurement and Fundamental Constants-II, B.N. Taylor and W.D. Phillips, Eds., U.S. G.P.O., in press.Google Scholar
  9. 9.
    B.P. Kibble and G.J. Hunt, Metrologia 15, 5–30 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    E.R. Williams and P.T. Olsen, IEEE Trans. Instrum. Meas. IM-27, 467 (1978).Google Scholar
  11. 11.
    G.L. Greene, Metrologia 17, 83 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    W. Chiao, R. Liu and P. Shen, IEEE Trans Instr. Meas. IM-29, 238 (1980).Google Scholar
  13. 13.
    P.T. Olsen, W.D. Phillips and E.R. Williams, J. Res. NBS 85, 257 (1980).Google Scholar
  14. 14.
    V.E. Bower and R.S. Davis, J. Res. NBS 85, 175 (1980). See also: V.E. Bower, R.S. Davis, T.J. Murphy, P.J. Paulsen, J.W. Gramlich and L.J. Powell, J. Res. NBS 87, 21 (1982).Google Scholar
  15. 15.
    Background in this area has been reviewed: R. Deslattes, “The Avogadro Constant” in Annual Reviews of Physical Chemistry 31, B.S. Rabinovitch, Ed., Annual Reviews, Inc., Palo Alto, USA (1980), p. 435.Google Scholar
  16. 16.
    B.W. Petley, “Electrical Metrology and the Fundamental Constant” in Metrology and Fundamental Constants Course 68 International School of Physics Enrico Fermi, A. Ferro Milone, P. Giacomo and S. Leschuitta, Ed., North Holland, Amsterdam, 1980, p. 358.Google Scholar
  17. 17.
    B. Cabrerra, S. Benjamin and J.T. Anderson, Physica 107B, 19 (1981).Google Scholar
  18. 18.
    J.C. Gallop, Jour. Phys. B 11, L93 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    E.G. Kessler, Jr., Phys. Rev. A 7, 408 (1973).ADSCrossRefGoogle Scholar
  21. 21.
    T.W. Hansch, M.H. Nayfeh, S.A. Lee, S.M. Curry and I.S. Shahin, Phys. Rev. Lett. 32, 1336 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    C. Wieman and T.W. Hansch, Phys. Rev. A 22, 192 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    S.R. Amin, C.D. Caldwell and W. Lichten, Phys. Rev. Lett. 47, 1234 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    K. Evenson, J.S. Wells, F.R. Petersen, B.L. Danielsen and G.W. Day, Appl. Phys. Lett. 22, 192 (1973).ADSCrossRefGoogle Scholar
  25. 25.
    C.R. Pollock, D.A. Jennings, F.R. Petersen, R.E. Drullinger, E.C. Beaty, J.S. Wells, J.L. Hall, H.P. Layer and K.M. Evenson, to be published.Google Scholar
  26. 26.
    The CCDM recommends that the metre be defined as follows: “The metre is the length of the path traveled by light in vacuum during the fraction 1/299 792 458 of a second.”Google Scholar
  27. 27.
    O.R. Wood II, C.K.N. Patel, D.E. Murnick, E.T. Nelson, M. Leventhal, H.W. Kugel and Y. Niv, Phys. Rev. Lett. 46, 398 (1982).ADSCrossRefGoogle Scholar
  28. 28.
    P.J. Mohr, Phys. Rev. Lett. 34, 1050 (1975).ADSCrossRefGoogle Scholar
  29. 29.
    G.W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    Participants were: P. Richard, M. Stockley and Redo Mann (Kansas State), R. Deslattes, P. Cowan and K.-H. Schartner (NBS), B. Johnson and K. Jones (BNL).Google Scholar
  31. 31.
    E.G. Kessler, Jr., R.D. Deslattes, D. Girard-Vernhet, W. Schwitz, L. Jacobs and O. Renner, Physical Review A (in press).Google Scholar
  32. 32.
    S. Chu and A.P. Mills, Jr., Phys. Rev. Lett. 48, 1333 (1982).ADSCrossRefGoogle Scholar
  33. 33.
    B. Edlen, Repts. Prog. Phys. XXVI, 181 (1963).Google Scholar
  34. 34.
    G. Murray, R.L. Graham and J.S. Geiger, Nucl. Phys. 63, 177 (1965).CrossRefGoogle Scholar
  35. 35.
    For a discussion of use of mass differences, see for example, R.G. Helmer, P.H.M. van Assehe and C. vander Leun, Atomic Data and Nuclear Data Tables 24, 39 (1979).Google Scholar
  36. 36.
    R.D. Deslattes, E.G. Kessler, Jr., W.C. Sauder and A. Henins, Annals of Phys. 129, 378 (1980).ADSCrossRefGoogle Scholar
  37. 37.
    S. Chu and A.P. Mills, Jr., Phys. Rev. Lett. 48, 1333 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Richard D. Deslattes
    • 1
  1. 1.Quantum Metrology GroupNational Bureau of StandardsUSA

Personalised recommendations