Fast Ion Beam Laser Spectroscopy (FIBLAS) : A Case Study : N2O+

  • Michel L. Gaillard
Conference paper


To a number of atomic and molecular physicists in the early seventies, ion spectroscopy has appeared as a “major challenge” area. From the experimental point of view, the field could be considered as still reasonably fresh: note for example that ten years ago, Herzberg1 could identify only seven molecular ions whose absorption spectra were known. It was generally agreed at that time that ion physics was of high applied interest in gas discharges, plasmas and, thus, astrophysics. The relevance of molecular ion physics in diluted plasma chemistry soon turned out to be crucial for ionospheric and interstellar reactions. However vague and sometimes poorly justified, those were the general assertions which were invoked whenever rationalization was needed (like in drafting proposals).


Kinetic Energy Release High Resolution Spectroscopy Fast Beam Kinetic Energy Release Distribution Photodissociation Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Herzberg, Rev. Chem. Soc., London 25: 201 (1971).CrossRefGoogle Scholar
  2. 2.
    M. Carré, M. Druetta, M.L. Gaillard, H.H. Bukow, M. Horani, A.L. Roche and M. Velghe, Mol. Phys. 40: 1453 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    M. Broyer, M. Larzillière, M. Carré, M.L. Gaillard, M. Velghe and J.B. Ozenne, Chem. Phys. 63: 445 (1981).CrossRefGoogle Scholar
  4. 4.
    M. Larzillière, M. Carré, M.L. Gaillard, J. Rostas, M. Horani and M. Velghe, J. Chimie Phys. 77: 689 (1980).ADSGoogle Scholar
  5. 5.
    S. Abed, M. Broyer, M. Carré, M.L. Gaillard and M. Larzillière, Phys. Rev. Lett. 49: 120 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    J.B. Ozenne, D. Pham and J. Durup, Chem. Phys. Lett. 17: 422 481 (1972).Google Scholar
  7. N.P.F.B. Van Asselt, J.G. Maas and J. Los, Chem. Phys. Lett. 24:555 (1974). ADSCrossRefGoogle Scholar
  8. 7.
    J.D. Silver, N.A. Jelley and L.C. McIntyre, Appl. Phys. Lett. 31: 278 (1977).ADSCrossRefGoogle Scholar
  9. 8.
    H.J. Andra, in: “Beam Foil Spectroscopy,” I.A. Sellin and D.J. Pegg, ed., Plenum, New-York, p. 835 (1975).Google Scholar
  10. 9.
    M. Dufay and M.L. Gaillard, in: “Laser Spectroscopy III,” J.L. Hall and J.L. Calsten, ed., Springer, Berlin, p. 231 (1977).Google Scholar
  11. 10.
    J. Durup, “Etats Atomiques et Moléculaires couplés à un continuum, Atomes et Molécules hautement excités,” éditions du C.N.R.S., Paris, p. 107 (1977).Google Scholar
  12. 11.
    A. Carrington, D.R.J. Milverton and P.J. Sarre, Mol. Phys. 35: 1505 (1978).ADSCrossRefGoogle Scholar
  13. 12.
    R.A. Holt, T.D. Gaily and S.D. Rosner, private communication.Google Scholar
  14. 13.
    A. Carrington and P.J. Sarre, J. Phys., Paris, C.I. 54 (1979).Google Scholar
  15. 14.
    W.H. Wing, G.A. Ruff, W.E. Lamb Jr. and J.J. Spezeski, Phys. Rev. Lett. 36: 1488 (1976).ADSCrossRefGoogle Scholar
  16. 15.
    A. Carrington, P.G. Roberts and P.J. Sarre, J. Chem. Phys. 68: 5659 (1978).ADSCrossRefGoogle Scholar
  17. 16.
    F. Béguin, M.L. Gaillard, H. Winter and G. Meunier, J. Phys. Paris 38: 1185 (1977).Google Scholar
  18. 17.
    J.R. Hiskes, Phys. Rev. 122: 1207 (1961).ADSCrossRefGoogle Scholar
  19. 18.
    A. Carrington, Proc. Roy. Soc. 367: 433 (1979).ADSCrossRefGoogle Scholar
  20. A. Carrington, J. Buttenshaw and P.G. Roberts, Mol. Phys. 38: 1711 (1979).ADSCrossRefGoogle Scholar
  21. 19.
    A. Carrington, P.G. Roberts and P.J. Sarre, Mol. Phys. 35: 1523 (1978).ADSCrossRefGoogle Scholar
  22. 20.
    P.C. Cosby, J.B. Ozenne, J,T. Moseley and D.L. Albritton, J. Molec. Spectrosc. 79: 203 (1980).ADSCrossRefGoogle Scholar
  23. 21.
    J.T. Moseley and J. Durup, J. Chim. Phys. 77: 673 (1980).Google Scholar
  24. 22.
    J.T. Moseley and J. Durup, Ann. Rev. Phys. Chem. 32: 53 (1981).ADSCrossRefGoogle Scholar
  25. 23.
    S.L. Kaufman, Opt. Comm. 17: 309 (1976).MathSciNetADSCrossRefGoogle Scholar
  26. 24.
    J.H.D. Eland, “Theory, Techniques and Applications,” Academic Press, New-York, 3: 231 (1978).Google Scholar
  27. 25.
    R.G. Orth and R.C. Dunbar, J. Chem. Phys. 66: 1616 (1977).ADSCrossRefGoogle Scholar
  28. 26.
    R.J. Saykally and R.C. Woods, Ann. Rev. Phys. Chem. 32: (1981).Google Scholar
  29. 27.
    D.G. Hopper, Chem. Phys. Lett. 31: 446 (1975).ADSCrossRefGoogle Scholar
  30. 28.
    J.H. Callomon and F. Creutzberg, Phil. Trans. Roy. Soc. A 277: 20 (1974).CrossRefGoogle Scholar
  31. 29.
    I. Nenner, P.M. Guyon, T. Baer and T.R. Govers, J. Chem. Phys. 72: 6587 (1980).ADSCrossRefGoogle Scholar
  32. 30.
    J.H.D. Eland, M. Devoret and S. Leach, Chem. Phys. Lett. 43: 97 (1976).ADSCrossRefGoogle Scholar
  33. 31.
    R. Frey, B. Gotchev, W.B. Peatman, H. Pollak and E.W. Schlag, Chem. Phys. Lett. 54: 411 (1978).ADSCrossRefGoogle Scholar
  34. 32.
    T.F. Thomas, F. Dale and J.F. Paulson, J. Chem. Phys. 67: 793 (1977).ADSCrossRefGoogle Scholar
  35. 33.
    A. Carrington, D.R.J. Milverton and P.J. Sarre, Mol. Phys. 482 32: 297 (1976).ADSCrossRefGoogle Scholar
  36. 34.
    C.P. Edwards, C.S. McLean and P.J. Sarre, Chem. Phys. Lett. 87: 11 (1982).ADSCrossRefGoogle Scholar
  37. 35.
    S. Abed, M. Broyer, M. Carré, M.L. Gaillard and M. Larzillière, Chem. Phys. (submitted for publication).Google Scholar
  38. 36.
    See for example: O. Poulsen, these proceedings.Google Scholar
  39. 37.
    A.D. McLean and M. Yoshimine, “Tables of linear molecule wave-functions,” I.B.M., San José, p. 196 (1967).Google Scholar
  40. 38.
    Ph. Millie, private communication.Google Scholar
  41. 39.
    M. Dufay, M. Carré, M.L. Gaillard, G. Meunier, H. Winter and A. Zgainski, Phys. Rev. Lett. 37: 1678 (1976).ADSCrossRefGoogle Scholar
  42. 40.
    H. Winter and M.L. Gaillard, Z. Phys. A 281: 31 1 (1977).Google Scholar
  43. 41.
    P. Ceyzeriat, D.J. Pegg, M. Carré, M. Druetta and M.L. Gaillard, J. Opt. Soc. Am. 70: 901 (1980).ADSCrossRefGoogle Scholar
  44. 42.
    M.L. Gaillard, D.J. Pegg, C.R. Dingham, H.K. Carter, R.L. Mlelcodaj and J.D. Cole (submitted to Phys. Rev. A).Google Scholar
  45. 43.
    J. Berkowitz and J.H.D. Eland, J. Chem. Phys. 67: 2740 (1977).ADSCrossRefGoogle Scholar
  46. 44.
    W. Neuhauser, M. Hohenstatt, P. Toschek and H. Dehmelt, Phys. Rev. Lett. 41: 233 (1978).ADSCrossRefGoogle Scholar
  47. 45.
    M. Larzillière, M. Carré, M.L. Gaillard and F. Stoeckel, Opt. Comm. 37: 27 (1981).ADSCrossRefGoogle Scholar
  48. 46.
    S.D. Rosner, T.D. Gaily and R.A. Holt, Phys. Rev. Lett. 40: 851 (1978).ADSCrossRefGoogle Scholar
  49. 47.
    O. Poulsen and N.I. Winstrup, Phys. Rev. Lett. 47: 1522 (1981).ADSCrossRefGoogle Scholar
  50. 48.
    H. Pummer, T. Srinivasan, H. Egger, K. Boyer, T.S. Luk and C.K. Rhodes, Opt. Lett. 7: 93 (1982).ADSCrossRefGoogle Scholar
  51. 49.
    A. Von Hellfeld, D. Feldmann, K.H. Welge, A.P. Fournier, Opt. Comm. 30: 193 (1979).ADSCrossRefGoogle Scholar
  52. 50.
    H.J. Coggiola, P.C. Cosby, J.R. Peterson, J. Chem. Phys. 483 72: 6507 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Michel L. Gaillard
    • 1
  1. 1.Laboratoire de Spectrométrie Ionique et Moléculaire(associé au CNRS), Université de Lyon IVilleurbanne CedexFrance

Personalised recommendations