Light Scattering as a Probe for Atomic Interactions

  • Keith Burnett
Conference paper


In this talk we should like to describe some recent work on the scattering of light by atomic and molecular collisions.1–8 This work, in our opinion, offers the prospect of a rather direct technique for studying the mechanisms of heavy particle collisions and reactions. We should also like to show that knowledge of such mechanisms, as well as being interesting in its own right, has important consequences for the field of laser assisted and modified collisions. Let us consider to begin with a conventional atomic or molecular crossed beam experiment where, for the sake of discussion, we suppose that we can specify all the relevant ingoing states of the colliding partners: translational and internal energies, spin, etc. Let us suppose that we can also measure all the corresponding quantities for the final or product states. If we have a ground state to ground state scattering problem with a single open channel there are well-established inversion procedures.9 For a multichannel problem, i.e. one where several asymptotic states are accessible, inversion is rarely possible. It may, in some cases, be possible to calculate an “ab initio potential” and do full quantal calculations; more often, however, we are forced to consider models of the interaction between the collision partners and consider which model fits the data best. It would, of course, be most advantageous if we could obtain some information more directly about the collision complex rather than have to be content with asymptotic information which may not tie down the form of the potential very well.


Interatomic Potential Internuclear Separation Collision Complex Intense Laser Field Modify Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Burnett, J. Cooper, R. J. Ballagh and E. W. Smith, Phys. Rev. A 22:2205 (1980); K. Burnett and J. Cooper, Phys. Rev. A 22:2027 (1980); K. Burnett and J. Cooper, Phys. Rev. A 22: 2044 (1980).MathSciNetADSGoogle Scholar
  2. 2.
    S. Mukamel, J. Chem. Phys. 71:2884 (1979); Y. Rabin, D. Grimbert and S. Mukamel, Phys. Rev. A 26: 271 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    G. Nienhuis, Physica 93c:393–407 (1978); J. Phys. B 15: 535–550 (1982).MathSciNetGoogle Scholar
  4. 4.
    P. Thomann, K. Burnett and J. Cooper, Phys. Rev. Lett. 45: 1326 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    D. Voslamber and J. B. Yelnik, Phys. Rev. Lett. 41: 1233 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    A. Ben-Reuven and Y. Rabin, Phys. Rev. A 19: 2056 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    F. H. Mies, Quantum theory of atomic collisions in intense laser fields, in: “Theoretical Chemistry: Advances and Perspectives,” Vol. 8, D. Henderson, ed., Academic Press, New York (1981); T. F. George, J. Phys. Chem. 86:10 (1982).Google Scholar
  8. 8.
    Kai-shue Lam and T. F. George, J. Chem. Phys. 76:3396 (1982); T. F. George., Theory of molecular rate processes in the presence of intense laser fields, in: Chemical and Bio-chemical Applications of Lasers, Vol. IV, C. B. Moore, ed., Academic Press, New York (1979).Google Scholar
  9. 9.
    H. Pauly, Elastic scattering cross sections. I: Spherical potentials, in: “Atom-Molecule Collision Theory, A Guide for the Experimentalist,” R. B. Bernstein, ed., Plenum, New York (1980).Google Scholar
  10. 10.
    R. J. LeRoy, Applications of Bohr quantization in diatomic molecule spectroscopy, in; Semiclassical Methods in Molecular Scattering and Spectroscopy, M. S. Child, ed., N.A.T.O. Advanced Study Institutes Series (Series C), Reidel, New York, (19).Google Scholar
  11. 11.
    R. E. M. Hedges, D. L. Drummond and A. Gallagher, Phys. Rev. A. 6: 1519 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    H. G. Kuhn, Phil. Mag. 18:987 (1934); Proc. Roy. Soc. A 158: 212 (1937).MATHGoogle Scholar
  13. 13.
    A. Jablonski, Acta Phys. Polon. 6:371 (1937); 7:196 (1938); Phys. Rev. 68: 78 (1945).MATHGoogle Scholar
  14. 14.
    J. L. Carlsten, A. Szöke and M. G. Raymer, Phys. Rev. A 15: 1029 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    J. V. McGinley, Thesis, Oxford University (1981).Google Scholar
  16. 16.
    M. G. Raymer, J. L. Carlsten and G. Pichler, J. Phys. B 12: L119 (1979).ADSCrossRefGoogle Scholar
  17. 17.
    P. Ewart, A. I. Ferguson S. V. O’Leary, Optics Commun. 40:147 (1981); P. Ewart and S. V. O’Leary (1982), to be published; M. Dagenais, Phys. Rev. A 24:1404 (1981); Y. Prior, A. R. Bogdan, M. Dagenais and N. Bloembergen, Phys. Rev. Lett. 46: 111 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    J. Cooper, “Why half a collision is better than a whole one,” (Invited talk), in: Sixth International Conference on Spectral Line Shapes, K. Burnett, ed., de Gruyter, Berlin (in press).Google Scholar
  19. 19.
    P. Julienne, “Non-adiabatic effects in line broadening,” (Invited talk), in: Sixth International Conference on Spectral Line Shapes, K. Burnett, ed., de Gruyter, Berlin (in press).Google Scholar
  20. 20.
    J. C. White, Opt. Lett. 242 (1981); M. H. Nayfeh and G. B. Hillard, Phys. Rev. A 24:1409 (1981); L. I. Gudzenko and S. I. Yakovlenko, Zh. Eksp. Teor. Fiz. 62:1686 (1972) [Sov. Phys.-JETP 35:877 (1972)]; S. E. Harris., in: “Tunable Lasers and Applications,” S. Mooradian, T. Jaeger and P. Stoketh., Springer, New York (1976), p. 193; S. E. Harris., Laser induced collisional energy transfer, in: Atomic Physics 7, D. Kleppner., Plenum, New York (1981); P. L. deVries, C. Chang, T. F. George, B. Laskowski, J. R. Stallcop, Phys. Rev. A 22:545 (1980).Google Scholar
  21. 21.
    A. Gallagher, The absorption and emission of radiation by the collision complex, in: “Physics of Electronic and Atomic Collisions,” S. Datz, ed., North Holland, Amsterdam (1982), pp. 403–411.Google Scholar
  22. 22.
    Y. Rabin and P. Hering, contributed paper European Conference on Atomic Physics, April 6–10, 1981, Ruprecht-Karls- Universität, Heidelberg, EPS Conference Abstracts Volume 5A, Part 11; T. Lukasik and S. C. Wallace, Phys. Rev. Lett. 47: 240 (1981).Google Scholar
  23. 23.
    P. Arrowsmith, F. E. Bartoszek, S. H. Bly, T. Carrington, Jr., P. E. Charters and J. C. Polanyi, J. Chem. Phys. 73:11,4895 (1980); P. Hering, P. R. Brooks, R. F. Curl, Jr., R. S. Judson and R. S. Lowe, Phys. Rev. Lett. 44: 687 (1980).CrossRefGoogle Scholar
  24. 24.
    K. Burnett, J. Cooper, P. D. Kleiber and A. Ben-Reuven, Phys. Rev. A 25: 1345–1357 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Rabin and A. Ben-Reuven, J. Phys. B 13: 2011 (1980).Google Scholar
  26. 26.
    S. Reynaud and C. C. Cohen-Tannoudji, “Dressed atom approach to collisional redistribution,” J. Physique (in press).Google Scholar
  27. 27.
    P. D. Kleiber, J. Cooper, K. Burnett, C. V. Kunasz and M. G. Raymer, “Theory of time dependent intense field collisional fluorescence,” Phys. Rev. A (submitted).Google Scholar
  28. 28.
    P. D. Kleiber, K. Burnett and J. Cooper, Phys. Rev. Lett. 47: 22, 1595 (1981).ADSCrossRefGoogle Scholar
  29. 29.
    J. C. Light and A. SzSke, Phys. Rev. A 1363 (1978).Google Scholar
  30. 30.
    J. Szudy and W. E. Baylis, J. Quant. Spectrosc. Radiat. Transfer 15: 641 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    A. M. Bonch-Bruevich, T. A. Vartanyan and V. V. Khromov, Zh. Eksp. Teor. Fiz. 78:538 (1980) [Sov. Phys.-JETP 51 (1980)]; T. A. Vartanyan, Yu. N. Maksimu, S. G. Przhibelskii and V. V. Khromov, Pis’ma Zh. Eksp. Teor. Fiz. 29: 281 (1979).ADSGoogle Scholar
  32. 32.
    E. W. Schmid and H. Ziegelmann, “The Quantum-Mechanical Three Body Problem,” Vieweg, Braunschweig (1974).Google Scholar
  33. 33.
    H. J. Korsch and R. Môhlenkamp, J. Phys. B 10:3451 (1977); H. J. Korsch, Phys. Rev. A 14:1645 (1976); B. J. B. Crowley and B. Buck, J. Phys. G 4: 9 (1978).ADSCrossRefGoogle Scholar
  34. 34.
    K. Burnett, unpublished work.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Keith Burnett
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of ColoradoBoulderUSA
  2. 2.Joint Institute for Laboratory AstrophysicsUniversity of Colorado and National Bureau of StandardsBoulderUSA

Personalised recommendations