Advertisement

Dynamics of Resonant States

Conference paper

Abstract

The mechanics of atoms is often divided into “structure” and “collision” problems. I view here “collisions” as including any nonperturbative excitation process or chemical reaction, more generally any transformation of the structure of matter. The independent particle model has proved extremely successful for describing and interpreting structures; in fact it is commonly regarded as the theory of atomic systems. This model has also accounted for optical transitions and for fast collisions, which can be treated as weak perturbations of atoms. Its scope and power have been extended by configuration mixing and other procedures.

Keywords

Configuration Space Resonant State Rydberg State Ridge Line Weak Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Schulz, Phys. Rev. Lett. 10, 104 (1963), Rev. Mod. Phys. 45, 378 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    S.J. Buckman, P. Hammond, F.H. Read, and G.C. King, to be published.Google Scholar
  3. 3.
    F.H. Read, Atomic Physics 7, ed. D. Kleppner and F.M. Pipkin (Plenum, N.Y., 1981), p. 429; U. Fano, Rep. Prog. Phys. (in press).Google Scholar
  4. 4.
    G. Wannier, Phys. Rev. 93, 817 (1963).Google Scholar
  5. 5.
    W.R.S. Garton and F.S. Tomkins, Astrophys. J. 158, 839 and 1212 (1969); K.T. Lu, F.S. Tomkins, and W.R.S. Garton, Proc. R. Soc. London A362, 421 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    J.O. Hirschfelder and E.P. Wigner, J. Chem. Phys. 7, 616 (1939).ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Launay and M. Le Dourneuf, J. Phys. B 15, L455 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    U. Fano, Phys. Rev. A 24, 2402 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    L.I. Schiff and H. Snyder, Phys. Rev. 55, 59 (1939).ADSMATHCrossRefGoogle Scholar
  10. 10.
    A.F. Starace, J. Phys. B 6, 585 (1973); see also A.R. Edmonds, J. Phys. (Paris) 31, Coll. C4–71 (1970).ADSCrossRefGoogle Scholar
  11. 11.
    M.L. Zimmerman, M.M. Kash, and D. Kleppner, Phys. Rev. Lett. 45, 1082 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    C.W. Clark and K.T. Taylor, J. Phys. B 13, L737 (1980), Nature 292, 437 (1981), J. Phys. B 15, 1 175 (1982).CrossRefGoogle Scholar
  13. 13.
    C. Goebel, private communication. A.E.R. Edmonds and collaborators have also studied classical orbits in the potential (1). See the report by C.W. Clark, K.T. Lu, and A.F. Starace, Sec. 2.2, in Progress in Atomic Spectroscopy, Part C, W. Hanle and H. Kleinpoppen (Plenum, N.Y., 1982) which comp-lements the present report.Google Scholar
  14. 14.
    E.A. Soloviev, Pis’ma v Zh.E.T.F. 34, 278 (1981) [Transl.: Sov. Phys. JETP Lett. 34, 265 (1981)].Google Scholar
  15. 15.
    J.J. Labarthe, J. Phys. B. 14, L467 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    D.R. Herrick, Phys. Rev. A 26, 323 (1981).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    H.A. Kramers and G.P. Ittman, Z. Phys. 53, 553 (1929), 58, 217 (1929), 60, 663 (1930).ADSCrossRefGoogle Scholar
  18. 18.
    R. Peterkop, J. Phys. B 4, 513 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    A.R.P. Rau, Phys. Rev. A 4, 207 (1971).ADSCrossRefGoogle Scholar
  20. 20.
    U. Fano, Phys. Rev. A 22, 2660 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    U. Fano, J. Phys. B 13, L519 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • U. Fano
    • 1
  1. 1.Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations