Advertisement

A Time-Dependent Local Density Approximation of Atomic Photoionization

  • A. Zangwill

Abstract

In recent years considerable effort has been expended in the calculation of accurate atomic photoionization cross sections. Interestingly, it has proved necessary to proceed far beyond the simplest Hartree-Fock approximation (HFA) to achieve this goal. The most extensive calculations to date have employed either the random phase approximation with exchange (RPAE)1 or many-body perturbation theory (MBPT)2. Both of these approaches build systematically on standard Hartree-Fock theory and yield results which are generally in excellent agreement with experiment.

Keywords

Radial Wave Function Effective Electric Field Local Density Approxi Total Photoabsorption Cross Section Excited Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M, Ya. Amusia, in Advances in Atomic and Molecular Physics, vol, 17, edited by D. Bates and B. Bederson (Academic, NY 1981 ).Google Scholar
  2. 2.
    H. P. Kelly and S. L. Carter, Phys. Scrip, (Sweden) 21, 448 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    W, Kohn and P8 Vashishta, in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N, March (Plenum, NY 1982 ).Google Scholar
  4. 4.
    S, H. Vosko, L. Wilk and M, Nusair, Can, J, Phys, 58, 1200 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    O. Gunnarsson and B, I, Lundqvist, Phys. Rev. B13, 4274 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    J, C. Slater, The Self -Consistent Field for Molecules and Solids: Quantum Theory of Molecules and Solids, vol, 4, ( McGraw Hill, NY, 1974 ).Google Scholar
  7. 7.
    A, R. Williams and U, von Barth, in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N, March (Plenum, NY 1982),Google Scholar
  8. 8.
    M. Ya. Amusia and N. A, Cherepkov, Case Stud. Atom. Phys, 5, 47 (1975).Google Scholar
  9. 9.
    J. B. West and J. Morton, Atom. Data and Nuc. Tab, 22, 103 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    R. Ahlberg and O, Goscinski, J, Phys, B 8, 2149 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    A. Zangwill and P. Soven, Phys, Rev. A 21, 1561 (1980),Google Scholar
  12. 12.
    M. J. Stott and E. Zaremba, Phys. Rev, A 21, 12 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    G. D. Mahan, Phys. Rev. A 22, 1780 (1980),Google Scholar
  14. 14.
    D. Liberman, LASL (unpublished),Google Scholar
  15. 15.
    A. Zangwill and P, Soven, J, Vac. Sci. Technol, 17, 159 (1980),Google Scholar
  16. 16.
    J. Geiger, Z. Phys, A 282, 129 (1977),Google Scholar
  17. 17.
    A, Zangwill, thesis ( University of Pennsylvania, Philadelphia 1981 ).Google Scholar
  18. 18.
    G. V, Marr and J, B. West, Atom, Data Nuc, Tab, 18, 497 (1976),Google Scholar
  19. 19.
    P, Rabe, K, Radier and H. W. Wolff, in Vacuum UV Radiation Physics edited by E, Koch et, al, (Vieweg-Pergamon, Berlin, 1974),Google Scholar
  20. 20.
    G. Wendin, in Photoionization and Other Probes of Many-Electron Interactions, edited by F. J. Wuilleumier (Plenum, NY 1976),Google Scholar
  21. 21.
    M. Ya. Amusia, in Atomic Physics 5, edited by R. Marrus et. al. ( Plenum, NY 1977 ).Google Scholar
  22. 22.
    H. P. Kelly, S. L, Carter and B, E. Norum, Phys. Rev. A 25, 2052 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    Z, Crljen and G. Wendin, to be published.Google Scholar
  24. 24.
    M. H. Hecht and I, Lindau, Phys, Rev, Lett. 47, 821 (1981) and private communication,Google Scholar
  25. 25.
    G. Wendin, in Vacuum UV Radiation Physics, edited by E. Koch etal. ( Vieweg-Pergamon, Berlin, 1974 ).Google Scholar
  26. 26.
    A. Zangwill and P, Soven, Phys, Rev. B 24, 4121 (1981),Google Scholar
  27. 27.
    E. R. Brown; S. L. Carter and H. P. Kelly, Phys, Lett, 66A, 290 (1978),Google Scholar
  28. 28.
    N. A. Cherepkov and L, V. Chernysheva, Phys. Lett, 60A, 103 (1977).CrossRefGoogle Scholar
  29. 29.
    P. J. Feibelman, Phys, Rev. B 12, 1319 (1975),ADSCrossRefGoogle Scholar
  30. 30.
    T. Ando, Z, Phys. B26, 263 (1977),ADSGoogle Scholar
  31. 31.
    Z, Levine and P. Soven, to be published,Google Scholar
  32. 32.
    P, C. Martin, in Many-Body Physics, edited by C. DeWitt and R. Balian (Gordon and Breach, NY 1968),Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • A. Zangwill
    • 1
    • 2
  1. 1.Department of PhysicsBrookhaven National LaboratoryUptonUSA
  2. 2.Dept. of PhysicsPolytechnic Institute of New YorkBrooklynUSA

Personalised recommendations