Osmoregulatory (Osm) Genes and Osmoprotective Compounds

  • A. R. Strøm
  • D. LeRudulier
  • M. W. Jakowec
  • R. C. Bunnell
  • R. C. Valentine
Part of the Basic Life Sciences book series (BLSC, volume 26)


A series of compounds, including glycine betaine and proline, known to accumulate in plants during osmotic stress, have been found to function as osmoprotective compounds for bacteria. In fulfilling “Koch’s Postulates” for the biological activity of these compounds, they have been found to protect against osmotic stress when added to the growth medium in relatively low concentration, or when synthesized in the cell. Cells may accumulate very high intracellular levels corresponding to the osmolarity of the medium using uptake systems that appear to be osmotically modulated. A proline overproducing mutation conferring osmotic tolerance has been constructed. Molecular cloning of an osmotic tolerance gene has been achieved. A unified concept of osmoregulation in microorganisms, animals and plants is discussed with some possible applications being pointed out.


Osmotic Stress Glycine Betaine Betaine Glycine Enteric Bacterium Osmotic Tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raper, C.D., and P.J. Kramer, eds. 1982. Crop Reactions to Water and Temperature Stresses in Humid, Temperate Climates. Westview Press, Boulder, Colorado.Google Scholar
  2. 2.
    Rains, D.W., R.C. Valentine, and A. Hollaender, eds. 1980. Genetic Engineering of Osmoregulation: Impact on Plant Productivity for Food, Chemicals, and Energy. Plenum Press, New York.Google Scholar
  3. 3.
    Hollaender, A., J.C. Aller, E. Epstein, A. San Pietro, and O.R. Zaborsky, eds. 1979. The Biosaline Concept: An Approach to the Utilization of Underexploited Resources. Plenum Press, New York.Google Scholar
  4. 4.
    San Pietro, A., ed. 1982. Biosaline Research: A Look to the Future. Plenum Publishing Corporation, New York.Google Scholar
  5. 5.
    Paleg, L.G., and D. Aspinall, eds. 1981. The Physiology and Biochemistry of Drought Resistance in Plants. Academic Press, Sydney.Google Scholar
  6. 6.
    Wyn Jones, R.G., and R. Storey. 1981. Betaines. In The Physiology and Biochemistry of Drought Resistance in Plants. L.G. Paleg and D. Aspinell, eds. Academic Press, Sydney, pp. 171–204.Google Scholar
  7. 7.
    Christian, J.H.B. 1955. The influence of nutrition on the water relations of Salmonella orianenburg. Aust. J. Biol. Sci. 8: 75–82.Google Scholar
  8. 8.
    Christian, J.H.B. 1955. The water relations of growth and respiration of Salmonella orianenburg at 30°C. Aust. J. Biol. Sci. 8: 490–497.Google Scholar
  9. 9.
    Britten, R.J., and F.T. McClure. 1962. The amino acid pool in Escherichia coli. Bacteriol. Rev. 26: 292–335.Google Scholar
  10. 10.
    Rafaeli-Eshkol, D., and Y. Avi-Dor. 1968. Studies on halotolerance in a moderately halophilic bacterium. Effect of betaine on salt resistance of the respiratory system. Biochem. 109: 687–691.Google Scholar
  11. 11.
    Shkedy-Vinkler, C., and Y. Avi-Dor. 1975. Betaine-induced stimulation of respiration at high osmolarities in a halotolerant bacterium. Biochem. J. 150: 219–226.Google Scholar
  12. 12.
    Le Rudulier, D., and R.C. Valentine. 1982. Genetic engineering in agriculture: Osmoregulation. Trends in Biochem. Sci. 427, (in press).Google Scholar
  13. 13.
    Csonka, L.N. 1980. The role of L-proline in response to osmotic stress in Salmonella typhimurium: Selection of mutants with increased osmotolerance as strains which over-produce L-proline. In Genetic Engineering of Osmoregulation. D.W. Rains, R.L. Valentine, and A. Hollaender, eds. Plenum Press, New York, pp. 35–52.CrossRefGoogle Scholar
  14. 14.
    Csonka, L.N. 1981. The Role of Proline in Osmoregulation in Salmonella Typhimurium and Escherichia Coli. In Trends in the Biology of Fermentations for Fuels and Chemicals. A. Hollaender, R. Rabson, P. Rogers, A. San Pietro, R. Valentine, and R. Wolfe, eds. Plenum Publishing Corporation, New York, pp. 533–542.CrossRefGoogle Scholar
  15. 15.
    Csonka, L.N. 1981. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Molec. Gen. Genet. 182: 82–86.Google Scholar
  16. 16.
    Rains, D.W., L. Csonka, D. Le Rudulier, T. P. Croughan, S.S. Yang, S.J. Stavarek, and R.C. Valentine. 1982. Osmoregulation by organisms exposed to saline stress: physiological mechanisms and genetic manipulation. Biosaline Research: A Look to the Future. A.S. Pietro, ed. Plenum Publishing Corporation, New York, pp. 283–302.Google Scholar
  17. 17.
    Measures, J.C. 1975. Role of amino acids in osmoregulation in non-halophilic bacteria. Nature 257: 398–400.PubMedCrossRefGoogle Scholar
  18. 18.
    Laimins, L.A., D.B. Rhoads, and W. Epstein. 1981. Osmotic control of kpd operon expression in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 78: 464–468.Google Scholar
  19. 19.
    Miller, J.F. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, New York.Google Scholar
  20. 20.
    Le Rudulier, D., G. Goas, and F. Larher. 1982. Onium compounds, amides and amino acid levels in nodules and other organs of nitrogen fixing plants. Z. Planzenphysiol. 105: 417–426.Google Scholar
  21. 21.
    Baich, A. 1969. Proline synthesis in Escherichia coli. A proline-inhibitable glutamic acid kinase. Biochim. Biophys. Acta 192: 462–467.Google Scholar
  22. 22.
    Baich, A. and D.J. Pierson. 1965. Control of proline synthesis in Escherichia coli. Biochim. Biophys. Acta 104: 397–404.Google Scholar
  23. 23.
    Ikuta, S., S. Imamura, H. Misaki, and Y. Horiuti. 1977. Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem. 82: 1741–1749.PubMedGoogle Scholar
  24. 24.
    Nagasawa, T., Y. Kawabata, Y. Tani, and K. Ogata. 1975. Choline dehydrogenase of Pseudomonas aeruginosa A-16. Agric. Biol. Chem. 39: 1513–1514.Google Scholar
  25. 25.
    Rafaeli-Eshkol, D., 1968. Studies on halotolerance in a moderately halophilic bacterium. Effect of growth conditions on salt resistance of the respiratory system. Biochem. J. 109: 679–685.Google Scholar
  26. 26.
    Galinski, E.A. and H.G. Truper. 1982. Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol. Lett. 13: 357–360.Google Scholar
  27. 27.
    Blau, K., 1961. Chromatographic methods for the study of amines from biological material. Biochem. J. 80: 193–200.Google Scholar
  28. 28.
    Kaback, H.R., and T.G. Deuel. 1969. Proline uptake by disrupted membrane preparations from Escherichia coli. Arch. Biochem. Biophys. 132: 118–129.Google Scholar
  29. 29.
    Kohno, T., and J.R, Roth. 1979. Electrolyte effects on the activity of mutant enzymes in vivo and in vitro. Biochemistry, 18: 1386–1392.PubMedCrossRefGoogle Scholar
  30. 30.
    Vinopal, R.T., S.A. Wartell, and K.S. Kolowsky. 1980. ß-galactosidase from osmotic remedial lactose utilization mutants of E. coli. In Genetic Engineering of Osmoregulation. D.W. Rains, R.C. Valentine, and A. Hollaender, eds. Plenum Press, New York, pp. 59–72.CrossRefGoogle Scholar
  31. 31.
    Fincham, J.R.S., and A.J. Baron. 1977. The molecular basis of an osmotically separable mutant of Neurospora crassa producing unstable glutamate dehydrogenase. Mol. Biol. 110: 627–642.Google Scholar
  32. 32.
    Strom, A.R. 1979. Biosynthesis of trimethylamine oxide in calanoid copepods. Seasonal changes in trimethylamine monoxygenase activity. Marine Biol. 51: 33–40.Google Scholar
  33. 33.
    Agustsson, I., and A.R. Strom. 1981. Biosynthesis and turnover of trimethylamine oxide in the teleost cod, Gadus morhua. J. Biol. Chem. 256: 8045–8049.Google Scholar
  34. 34.
    Shewan, J. M. 1951. The chemistry and metabolism of the nitrogenous extractives in fish. In The Biochemistry of Fish. R.T. Williams, ed. Cambridge: Biochemical Society Symposia 6, pp. 28–48.Google Scholar
  35. 35.
    Schoffeniels, E., and R. Giles. 1970. Nitrogen constituents and nitrogen metabolisms in arthropods. In Chemical Zoology. M. Florkin, and B.T. Scheer, eds. Academic Press, New York. Vol. 5, part A, pp. 199–227.Google Scholar
  36. 36.
    Gilles, R. 1971. Mechanisms of ion and osmoregulation. In Marine Ecology. A Comprehensive, Integrated Treatise on Life in Oceans and Coastal Waters. O. Kinne, ed. John Wiley and Sons, Chichester. Vol. 2, part 1, pp. 257–347.Google Scholar
  37. 37.
    Wright, D.J. and D.R. Newall. 1981. Osmotic and ionic regulation in nematodes. In Nematodes as Biological Models. B.M. Zuckerman, ed. Academic Press, Inc., New York. Vol. 2, pp. 143–164.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • A. R. Strøm
    • 2
  • D. LeRudulier
    • 3
  • M. W. Jakowec
    • 1
  • R. C. Bunnell
    • 1
  • R. C. Valentine
    • 1
  1. 1.Plant Growth LaboratoryUniversity of CaliforniaDavisUSA
  2. 2.Institute of FisheriesUniversity of TromsøTromsøNorway
  3. 3.Laboratoire de Physiologie VégétaleUniverité de Rennes IRennes CedexFrance

Personalised recommendations