Protoplast Fusion: Agricultural Applications of Somatic Hybrid Plants

  • David A. Evans
  • C. E. Flick
Part of the Basic Life Sciences book series (BLSC, volume 26)


Interspecific sexual hybridization has, been important both in the evolution of cultivated crops (1) and for the development of new cultivated varieties. Several cultivated crops are allopolyploids that were originally derived through sexual hybridization, chromosome doubling, and subsequent diploidization (2). Hence, the historical value of interspecific hybridization is well documented. Interspecies hybrids have been extremely useful for transfer of genes into cultivated crops (3). Several plant varieties have been released that express traits derived from wild species. These include varieties of tomato, tobacco, barley, potato, wheat, etc. For example, resistance to several diseases has been transferred from Solanum demissum into cultivated potatoes (4). One variety of tobacco has resistance to three diseases derived from three different wild Nicotiana species (5). Disease resistance often may be controlled by a single gene and is relatively easy to transfer by hybridization. However, traits traditionally viewed as more complex have also been transferred into cultivated crops using sexual hybridization. For example, interspecies hybrids of oats (6) and tobacco (7) have been identified with improved yield. Novel variation, not expressed in either parent species, has also been observed in some interspecies sexual hybrids, such as cytoplasmically controlled male sterility in tobacco and improved fruit pigmentation in tomato.


Somatic Hybrid Protoplast Fusion Mitotic Recombination Chromosome Elimination Sexual Hybrid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simmonds, N.W. 1976. Evolution of Crop Plants. London: Longman.Google Scholar
  2. 2.
    Brown, W.V. 1972. Textbook of Cytogenetics. St. Louis: Mosby.Google Scholar
  3. 3.
    Bates, L.S., and C.W. Deyoe. 1973. Wide hybridization and cereal improvement. Econ. Bot. 27: 401–412.CrossRefGoogle Scholar
  4. 4.
    Ross, H. 1979. Wild species and primitive cultivars as ancestors of potato varieties. In Broadening the Genetic Base of Crops, pp. 237–245. A.C. Zeven and A.M. van Harten, eds. Wageningen, Netherlands: PUDOC.Google Scholar
  5. 5.
    Collins, G.B., C.C. Litton, P.D. Legg, and J.H. Smiley. 1978. Registration of Kentucky 15 tobacco. Crop Sci. 18: 694.Google Scholar
  6. 6.
    Langer, I., K.G. Frey, and T.B. Bailey. 1978. Production response and stability characteristics of oat cultivars developed in different eras. Crop Sci. 18: 938–942.CrossRefGoogle Scholar
  7. 7.
    Oupadissakoon, S., and E.A. Wernsman. 1977. Agronomic performance and nature of gene effects in progenitor species-derived genotypes of tobacco. Crop Sci. 17: 843–847.CrossRefGoogle Scholar
  8. 8.
    Gamborg, O.L., J.P. Shyluk, and E.A. Shahin. 1981. Isolation, fusion and culture of plant protoplasts. In Plant Tissue Culture: Methods and Applications in Agriculture, pp. 115–153. T.A. Thorpe, ed. New York: Academic Press.Google Scholar
  9. 9.
    Evans, D.A. 1982. Protoplast fusion. In Handbook of Plant Cell Culture. D.A. Evans, et al., eds. MacMillan Press (in press).Google Scholar
  10. 10.
    Kao, K.N., and M.R. Michayluk. 1974. A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115: 355–367.CrossRefGoogle Scholar
  11. 11.
    Vasil, I.K., V. Vasil, W.D. Sutton, and K.L. Giles. 1975. Protoplasts as tools for the genetic modification of plants. In Proceedings IV International Symposium on Yeast and Other Protoplasts, p. 82. Nottingham, U.K.: Univ. of Nottingham.Google Scholar
  12. 12.
    Carlson, P.S., H.H. Smith, and R.D. Dearing. 1972. Parasexual interspecific plant hybridization. Proc. Natl. Acad. Sci. 69: 2292–2294.PubMedCrossRefGoogle Scholar
  13. 13.
    Melchers, G., and G. Labib. 1974. Somatic hybridization of plants by fusion of protoplasts I. Selection of light resistant hybrids of “haploid” light sensitive varieties of tobacco. Mol. Gen. Genet. 135: 277–294.CrossRefGoogle Scholar
  14. 14.
    Schieder, O. 1977. Hybridization experiments with protoplasts from chlorophyll-deficient mutants of some Solanaceous species. Planta 137: 253–257.CrossRefGoogle Scholar
  15. 15.
    Douglas, G.C., L.R. Wetter, C. Nakamura, W.A. Keller, and G. Satterfield. 1981. Somatic hybridization between Nicotiana rustica and N. tabacum. Can. J. Bot. 59: 220–227.CrossRefGoogle Scholar
  16. 16.
    Evans, D.A. 1982. Protoplast fusion and plant regeneration in tobacco. In Plant Regeneration and Genetic Variation, pp. 303–323. Praeger Press.Google Scholar
  17. 17.
    White, D.W.R., and I.K. Vasil. 1979. Use of amino acid analogue-resistant cell lines for selection of Nicotiana sylvestris somatic cell hybrids. Theor. Appl. Genet. 55: 107–112.CrossRefGoogle Scholar
  18. 18.
    Glimelius, K., T. Eriksson, R. Graf e, and A.J. Muller. 1978. Somatic hybridization of nitrate-deficient mutants of Nicotiana tabacum by protoplast fusion. Physiol. Plant. 44: 273–277.CrossRefGoogle Scholar
  19. 19.
    Maliga, P., G. Lazar, F. Joo, A.H. Nagy, and L. Menczel. 1977. Restoration of morphogenetic potential in Nicotiana by somatic hybridization. Mol. Gen. Genet. 157: 291–196.CrossRefGoogle Scholar
  20. 20.
    Wullems, G.J., K.J. Molendij, and R.A. Schilperoort. 1980. The expression of tumor markers in intraspecific somatic hybrids of normal and crown gall cells from Nicotiana tabacum. Theor. Appl. Genet. 56: 203–208.CrossRefGoogle Scholar
  21. 21.
    Medgyesy, P. L. Menczel, and P. Maliga. 1980. The use of cytoplasmic streptomycin resistance: Chloroplast transfer from Nicotiana tabacum into Nicotiana sylvestris and isolation of their somatic hybrids. Mol. Gen. Genet. 179: 693–698.CrossRefGoogle Scholar
  22. 22.
    Menczel, L., F. Nagy, Z.R. Kiss, and P. Maliga. 1981. Streptomycin resistant and sensitive hybrids of Nicotiana tabacum + Nicotiana knightiana: Correlation of resistance with N. tabacum plastids. Theor. Appl. Genet. 59:191–195.Google Scholar
  23. 23.
    Lazar, G.B., D. Dudits, and Z.R. Sung. 1981. Expression of cycloheximide resistance in carrot somatic hybrids and their segregants. Genetics 98: 347–356.PubMedGoogle Scholar
  24. 24.
    Kameya, T., M.E. Horn, and J.M. Widholm. 1981. Hybrid shoot formation from fused Daucus carota and D. capillifolius protoplasts. Z. Pflanzenphysiol. 104: 459–466.Google Scholar
  25. 25.
    Schieder, O. 1978. Somatic hybrids of Datura innoxia Mill. + Datura discolor Bernh. and of Datura innoxia Mill. + Datura stramonium L. var. tatula L. I. Selection and characterization. Mol. Gen. Genet. 162:113–119.Google Scholar
  26. 26.
    Maliga, P., Z.R. Kiss, A.H. Nagy, and G. Lazar. 1978. Genetic instability in somatic hybrids of Nicotiana tabacum and Nicotiana knightiana. Mol. Gen. Genet. 163: 145–151.CrossRefGoogle Scholar
  27. 27.
    Wetter, L.R. 1977. Isoenzyme patterns in soybean-Nicotiana somatic hybrid cell lines. Mol. Gen. Genet. 150: 231–235.CrossRefGoogle Scholar
  28. 28.
    Sibi, M. 1978. Multiplication conforme, non conforme. Le Selectionneur Francais 26: 9–18.Google Scholar
  29. 29.
    Shepard, J.F. 1982. The regeneration of potato plants from leaf cell protoplasts. Sci. Am. 246: 154–166.CrossRefGoogle Scholar
  30. 30.
    Evans, D.A., C.E. Flick, S.A. Kut, and S.M. Reed. 1982. Comparison of Nicotiana tabacum and Nicotiana nesophila hybrids produced by ovule culture and protoplast fusion. Theor. Appl. Genet. 62: 193–198.Google Scholar
  31. 31.
    Kao, K.N. 1977. Chromosomal behavior in somatic hybrids of soybean-Nicotiana glauca. Mol. Gen. Genet. 150: 225–230.CrossRefGoogle Scholar
  32. 32.
    Hoffman, F., and T. Adachi. 1981. “Arabidobrassica”: Chromosomal recombination and morphogenesis in asymmetric intergeneric hybrid cells. Planta 153: 586–593.Google Scholar
  33. 33.
    Evans, D.A., L.R. Wetter, and O.L. Gamborg. 1980. Somatic hybrid plants of Nicotiana glauca and Nicotiana tabacum obtained by protoplast fusion. Physiol. Plant. 48: 225–230.CrossRefGoogle Scholar
  34. 34.
    Halliard, G., F. Vedel, and G. Pelletier. 1979. Mitochondrial recombination in cytoplasmic hybrids of Nicotiana tabacum by protoplast fusion. Nature 281: 401–403.CrossRefGoogle Scholar
  35. 35.
    Evans, D.A., and E.F. Paddock. 1976. Comparisons of mitotic crossing-over frequency in Nicotiana tabacum and three other crop species. Can. J. Genet. Cytol. 18: 57–65.Google Scholar
  36. 36.
    Carlson, P.S. 1974. Mitotic crossing-over in plants. Genet. Res. 24: 109–112.CrossRefGoogle Scholar
  37. 37.
    Malmberg, R.L., P.J. Koivuniemi, and P.S. Carlson. 1980. Plant cell genetics-stuck between a phene and its genes. In Plant Cell Cultures: Results and Perspectives, pp. 15–30. F. Sala, et al., eds. N. Holland: Elsevier.Google Scholar
  38. 38.
    Schieder, O., and I.K. Vasil. 1980. Protoplast fusion and somatic hybridization. In International Review of Cytology Suppl. 11B, pp. 21–46. I.K. Vasil, ed. New York: Academic Press.Google Scholar
  39. 39.
    Evans, D.A., C.E. Flick, and R.A. Jensen. 1981. Somatic hybrid plants between sexually incompatible species of the genus Nicotiana. Science 213: 907–909.PubMedCrossRefGoogle Scholar
  40. 40.
    Power, J.B., K.C. Sink, S.F. Berry, S.F. Burns, and E.C. Cocking. 1981. Somatic and sexual hybrids of Petunia hybrida and Petunia parodii. J. Hered. 69: 373–376.Google Scholar
  41. 41.
    Schieder, O. 1980. Somatic hybrids of Datura innoxia Mill. + Datura discolor Berth. and Datura innoxia Mill. + Datura stramonium L. var. tatula L. H. Analysis of progenies of three sexual generations. Mol. Gen. Genet. 139: 1–4.Google Scholar
  42. 42.
    Chaleff, R.S. 1981. Genetics of Higher Plants. Cambridge: Cambridge Univ. Press. See pp. 94–95.Google Scholar
  43. 43.
    Chen, K., S.G. Wildman, and H.H. Smith. 1977. Chloroplast DNA distribution in parasexual hybrids as shown by polypeptide composition of fraction-1 protein. Proc. Natl. Acad. Sci. 74: 5109–5112.PubMedCrossRefGoogle Scholar
  44. 44.
    Iwai, S., T. Nagao, K. Nakata, N. Kawashima, and S. Matsuyama. 1980. Expression of nuclear and chloroplast genes coding for fraction-1 protein in somatic hybrids of Nicotiana tabacum + rustica. Planta 147: 414–417.CrossRefGoogle Scholar
  45. 45.
    Izhar, S., and Y. Tabib. 1980. Somatic hybridization in Petunia Part II. Heteroplasmic state in somatic hybrids followed by cytoplasmic segregation into male sterile and male fertile lines. Theor. Appl. Genet. 57: 241–245.CrossRefGoogle Scholar
  46. 46.
    Aviv, D., R. Fluhr, M. Edelman, and E. Galun. 1980. Progeny analysis of the interspecific somatic hybrids: Nicotiana tabacum (ems) + Nicotiana sylvestris with respect to nuclear and chloroplast markers. Theor. Appl. Genet. 56: 145–150.CrossRefGoogle Scholar
  47. 47.
    Galun, E., P. Arzee-Gonen, R. Fluhr, M. Edelman, and D. Aviv. 1982. Cytoplasmic hybridization in Nicotiana mitochondrial NDA analysis in progenies resulting from fusion between protoplasts having different organelle constitutions. Mol. Gen. Genet. 186: 50–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Conde, M.R. 1981. Chloroplast DNA recombination in Nicotiana somatic parasexual hybrids. Genetics 97: s26.Google Scholar
  49. 49.
    Flick, C.E., and D.A. Evans. 1982. Evaluation of cytoplasmic segregation in somatic hybrids in the genus Nicotiana: Tentoxin sensitivity. J. Hered. 73: 264–266.Google Scholar
  50. 50.
    Kostoff, D. 1943. Cytogenetics of the Genus “Nicotiana”. Sofia, Bulgaria: State Printing House.Google Scholar
  51. 51.
    Schieder, O. 1978. Genetic evidence for the hybrid nature of somatic hybrids from Datura innoxia Mill. Planta 141: 333–334.Google Scholar
  52. 52.
    Maliga, P., H. Lorz, G. Lazar, and F. Nagy. 1982. Cytoplast-protoplast fusion for interspecific chloroplast transfer in Nicotiana. Mol. Gen. Genet. 185: 211–215.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • David A. Evans
    • 1
  • C. E. Flick
    • 1
  1. 1.DNA Plant Technology CorporationCinnaminsonUSA

Personalised recommendations