Plant Gene Structure

  • Joachim Messing
  • Daniel Geraghty
  • Gisela Heidecker
  • Nien-Tai Hu
  • Jean Kridl
  • Irwin Rubenstein
Part of the Basic Life Sciences book series (BLSC, volume 26)


Techniques in molecular cloning and DNA sequencing have provided the tools to study the structure of genes at the nucleotide level. Most of these studies have been conducted on mammalian genes. From the comparison of individual genes much knowledge has been gained about organization and potential signal sequences. Although relatively little sequence data is available for plant genes, their number has grown to a degree where similar comparisons may be initiated. Using our studies of the zein storage protein and the data of other laboratories we may draw the following conclusions: 1) Like other plant genes, zein genes are organized in multigene families. Hybridization techniques and sequence data further subdivide the zein multigene family into subfamilies. 2) The sequence data obtained also allows us to determine the protein sequence and the sequence variation among the zein proteins which has occurred during evolution. 3) Comparing the zein genes and other known plant genes, we have identified potential signal sequences which can be distinguished from those of animal genes.


Plant Gene Cauliflower Mosaic Virus Maize Endosperm Animal Gene Alcohol Dehydrogenase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argos, P., K. Pedersen, M.D. Marks, and B. Larkins. 1982. A structural model for maize zein proteins. J. Biol. Chem. (in press).Google Scholar
  2. 2.
    Benoist, C., K. O’Hare, R. Breathnach, and P. Chambon. 1980. The ovalbumin gene-sequence of putative control regions. Nucl. Acids Res. 8: 127–142.Google Scholar
  3. 3.
    Bietz, J.A., J.W. Paulis, and J.S. Wall. 1979. Zein subunit homology revealed through amino-terminal sequence analysis. Cereal Chem. 56: 327–332.Google Scholar
  4. 4.
    Brisson, N., and D.P. Verma. 1982. Soybean leghemoglobin gene family: Normal pseudo, and truncated genes. Proc. Natl. Acad. Sci. USA 79: 4055–4059.Google Scholar
  5. 5.
    Burr, B., F.A. Burr, I. Rubenstein, and M.N. Simon. 1978. Purification and translation of zein messenger RNA from maize endosperm protein bodies. Proc. Natl. Acad. Sci. USA 75: 696–700.Google Scholar
  6. 6.
    Burr, B., F.A. Burr, T.P. St. John, M. Thomas, and R.W. Davis. 1982. Zein storage protein gene family of maize. J. Mol. Biol. 154: 33–49.Google Scholar
  7. 7.
    Cohen, S.N., A.C.Y. Chang, H.W. Boyer, and R.B. Helling. 1973. Construction of biological functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 70: 3240–3244.Google Scholar
  8. 8.
    Covey, S.N., G.P. Lomonossoff, and R. Hull. 1981. Characterization of cauliflower mosaic virus DNA sequences which encode major polyadenylated transcripts. Nucl. Acids Res. 24: 6735–6747.Google Scholar
  9. 9.
    Croy, R.R., G. Lycett, J.A. Gatehouse, J.N. Yarwood, and D. Boulter. Cloning and analysis of cDNAs encoding plant storage protein precursors. Nature 295: 76–78.Google Scholar
  10. 10.
    De Greve, H., P. Dhaese, H. Seurinck, M. van Montagu, and J. Schell. 1982. Nucleotide sequence and transcript map of Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene. J. Mol. Appl. Genet. (in press).Google Scholar
  11. 11.
    Early, P., J. Rogers, M. Davis, K. Calame, M. Bond, R. Wall, and L. Hood. 1980. Two mRNAs can be produced from a single immunoglobulin u-gene by alternative RNA processing pathways. Cell 20: 313–319.PubMedCrossRefGoogle Scholar
  12. 12.
    Fischer, R.L., and R.B. Goldberg. 1982. Structure and flanking regions of soybean seed protein genes. Cell 29: 651–660.PubMedCrossRefGoogle Scholar
  13. 13.
    Fitzgerald, M., and T. Shenk. 1981. The sequence 5’-AAUAAA-3’ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24: 251–260.PubMedCrossRefGoogle Scholar
  14. 14.
    Frank, A., H. Guilley, G. Jonard, K. Richards, and L. Hirth. 1980. Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21: 285–294.CrossRefGoogle Scholar
  15. 15.
    Gardner, R.C., A.J. Howarth, P. Hahn, M. Brown-Luedi, R.J. Shepherd, and J. Messing. 1981. The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucl. Acids Res. 9: 2871–2888.Google Scholar
  16. 16.
    Geraghty, D., M.A. Peifer, I. Rubenstein, and J. Messing. 1981. The primary structure of a plant storage protein: Zein. Nucl. Acids Res. 9: 5163–5174.Google Scholar
  17. 17.
    Geraghty, D., J. Messing, and I. Rubenstein. 1982. Sequence analysis and comparison of cDNAs of the zein multigene family. (submitted for publication).Google Scholar
  18. 18.
    Gerlach, W.L., Pryor, A.J., E.S. Dennis, R.J. Ferl, M.M. Sachs, and W.J. Peacock. 1982. cDNA cloning and induction of the alcohol dehydrogenase gene (ADH1) of maize. Proc. Natl. Acad. Sci. USA 79: 2981–2985.Google Scholar
  19. 19.
    Gianazza, E., P.G. Rhigetti, F. Pioli, E. Galante, and C. Soave. 1976. Size and charge heterogeneity of zein in normal and opaque-2 maize endosperms. Maydica 21: 1–17.Google Scholar
  20. 20.
    Grosveld, G.C., C.K. Shewmaker, P. Jat, and R.A. Flavell. 1981. Localization of DNA sequences necessary for transcription of the rabbit beta-globin gene in vitro. Cell 25: 215–226.PubMedCrossRefGoogle Scholar
  21. 21.
    Grosveld, G.C., E. de Boer, C.K. Shewmaker, and R.A. Flavell. 1982. DNA sequences necessary for transcription of the rabbit beta-globin gene in vivo. Nature 295: 120–126.PubMedCrossRefGoogle Scholar
  22. 22.
    Guifoyle, T.J. 1980. Transcription of cauliflower mosaic virus genome in isolated nuclei from turnip leaves. Virology 107: 71–80.CrossRefGoogle Scholar
  23. 23.
    Hagen, G., and I. Rubenstein. 1980. Two dimensional gel analysis of the zein proteins in maize. Plant Sci. Lett. 19: 217–223.Google Scholar
  24. 24.
    Hagen, G., and I. Rubenstein. 1981. Complex organization of zein genes in maize. Gene 13: 239–249.PubMedCrossRefGoogle Scholar
  25. 25.
    Heidecker, G., J. Messing, and B. Gronenborn. 1980. A versatile primer for DNA sequencing in the M13mp2 cloning system. Gene 10: 69–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Heidecker, G., and J. Messing. 1982. Construction of a maize endosperm cONA library by a new mRNA cloning technique (manuscript in preparation).Google Scholar
  27. 27.
    Heilig, R., F. Perrin, F. Gannon, J.L. Mandel, and P. Chambon. 1980. The ovalbumin gene family: Structure of the x gene and evolution of duplicated split genes. Cell 20: 625–637.Google Scholar
  28. 28.
    Hu, N.-T., and J. Messing. 1982. The making of strand specific M13 probes. Gene 17: 271–277.PubMedCrossRefGoogle Scholar
  29. 29.
    Hu, N.-T., M.A. Peifer, G. Heidecker, J. Messing, and I. Rubenstein. 1982. Primary structure of a zein genomic clone (submitted for publication).Google Scholar
  30. 30.
    Hutchinson, III, C.A., S. Phillips, M.H. Edgell, S. Gillam, P. Jahnke, and M. Smith. 1978. Mutagenesis at a specific position in a DNA sequence. J. Biol. Chem. 253: 6551–6560.Google Scholar
  31. 31.
    Hyldig-Nielsen, J., E. Jensen, K. Paludan, 0. Wiborg, R. Garret, P. Jorgensen, and K. Marcker. 1982. The primary structure of two leghemoglobin genes from soybean. Nucl. Acids Res. 10: 689–701.Google Scholar
  32. 32.
    Inouye, M., and S. Halegoua. 1980. Secretion and membrane localization of protein in Escherichia coli. Crit. Rev. Biochem. 7: 339–371.Google Scholar
  33. 33.
    Kedes, L.H. 1979. Histone genes and histone messengers. Ann. Rev. Biochem. 48: 837–870.Google Scholar
  34. 34.
    Kozak, M. 1981. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucl. Acids Res. 9: 5233–5252.Google Scholar
  35. 35.
    Kridl, J., J. Vieira, I. Rubenstein, and J. Messing. 1982. Further analysis of zein genes in maize (manuscript in preparation).Google Scholar
  36. 36.
    Larson, R., and J. Messing. 1982. Apple II software for M13 shotgun DNA sequencing. Nucl. Acids Res. 10: 39–49.Google Scholar
  37. 37.
    Lerner, M.R., J.A. Boyle, S.M. Mount, S.L. Wolin, and J.A. Steitz. 1980. Are snRNPs involved in splicing. Nature 283: 220–224.PubMedCrossRefGoogle Scholar
  38. 38.
    Lewis, E.D., G. Hagen, J.I. Mullins, P. Mascia, W.D. Park, W.D. Benton, and I. Rubenstein. 1981. Cloned genomic segments of Zea mays homologous to zein mRNAs. Gene 14: 205–215.PubMedCrossRefGoogle Scholar
  39. 39.
    Marks, M.D., and B. Larkins. 1982. Analysis of sequence microheterogeneity among zein messenger RNAs. J. Biol. Chem. (in press).Google Scholar
  40. 40.
    McKnight, S.L., and R. Kingsbury. 1982. Transcriptional control signals of a eukaryotic protein coding gene. Science 217: 316–324.PubMedCrossRefGoogle Scholar
  41. 41.
    Messing, J., B. Gronenborn, B. Muller-Hill, and P.H. Hofschneider. 1977. Filamentous coliphage M13 as a cloning vehicle: Insertion of a Hind II fragment of the lac regulatory region in the M13 replicative form in vitro. Proc. Natl. Acad. Sci. USA 75: 3642–3646.Google Scholar
  42. 42.
    Messing, J., R. Crea, and P.H. Seeburg. 1981. A system for shotgun DNA sequencing. Nucl. Acids Res. 9: 309–321.Google Scholar
  43. 43.
    Messing, J. 1982. New M13 vectors for cloning, In Recombinant DNA, Part B, Methods In Enzymo Vol 71. R. Wu, ed. Academic Press, New York (in press).Google Scholar
  44. 44.
    Murray, N.E., and K. Murray. 1974. Manipulations of restriction targets in phage lambda to form receptor chromosomes for DNA fragments. Nature 251: 476–481.PubMedCrossRefGoogle Scholar
  45. 45.
    Park, W.D., E.D. Lewis, and I. Rubenstein. 1980. Heterogeneity of zein mRNA and protein in maize. Plant Physiol. 65: 98–106.PubMedCrossRefGoogle Scholar
  46. 46.
    Pedersen, K., J. Devereux, D.R. Wilson, E. Sheldon, and B.A. Larkins. 1982. Cloning and sequence analysis reveal structural variation among related zein genes in maize. Cell 29: 1015–1026.PubMedCrossRefGoogle Scholar
  47. 47.
    Proudfoot, N.J. 1979. Eukaryotic promoters? Nature 279: 376.PubMedCrossRefGoogle Scholar
  48. 48.
    Rambach, A., and P. Tiollais. 1974. Bacteriophage lambda having EcoRI sites only in nonessential region of the genome. Proc. Natl. Acad. Sci. USA 71: 3927–3931.Google Scholar
  49. 49.
    Rhigetti, P.G., E. Gianazza, A. Viotti, and C. Soave. 1977. Heterogeneity of storage proteins in maize. Planta 136: 115–123.CrossRefGoogle Scholar
  50. 50.
    Setzer, D.R., M. McGrogan, J.H. Nunberg, and R.T. Schimke. 1980. Size heterogeneity in the 3’ end of dihydrofolate reductase messenger RNA in mouse cells. Cell 22: 361–370.PubMedCrossRefGoogle Scholar
  51. 51.
    Shah, D.M., R.C. Hightower, and R.B. Meagher. 1982. Complete nucleotide sequence of a soybean actin gene. Proc. Natl. Acad. Sci. USA 79: 1022–1026.Google Scholar
  52. 52.
    Shortle, D., and D. Nathans. 1978. Local mutagenesis: A method for generating viral mutants with base substitutions in preselected regions of the viral genome. Proc. Natl. Acad. Sci. USA 75: 2170–2174.Google Scholar
  53. 53.
    Soave, C., P.G. Rhigetti, C. Lorenzoni, E. Gentinetta, and F. Salamini. 1976. Expressivity of the opaque-2 gene at the level of zein molecular components. Maydica 21: 61–75.Google Scholar
  54. 54.
    Soave, C., N. Suman, A. Viotti, and F. Salamini. 1978. Linkage relationships between regulatory and structural gene loci involved in zein synthesis in maize. Theor. Appl. Genet. 52: 263–268.Google Scholar
  55. 55.
    Stachel, S., A. Depicker, P. Dhaese, and H. Goodman. 1982. The nopaline synthase gene mapping and DNA sequence. J. Mol. Appl. Genet. (submitted for publication).Google Scholar
  56. 56.
    Sun, S.M., J.L. Slightom, and T.C. Hall. 1981. Intervening sequences in a plant gene–comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin. Nature 289: 37–41.CrossRefGoogle Scholar
  57. 57.
    Thomas, M., J.R. Cameron, and R.W. Davis. 1974. Viable molecular hybrids of bacteriophage lambda and eukaryotic DNA. Proc. Natl. Acad. Sci. USA 71: 4579–4583.Google Scholar
  58. 58.
    Tosi, M., R.A. Young, O. Hagenbuchle, and V. Schibler. 1981. Multiple polyadenylation sites in a mouse alpha-amylase gene. Nucl. Acids Res. 9: 2313–2323.Google Scholar
  59. 59.
    Viotti, A., D. Abildsten, N. Pogna, E. Sala, and V. Pirrotta. 1982. Multiplicity and diversity of cloned zein cDNA sequences and their chromosomal localization. EMBO J. 1: 53–58.PubMedGoogle Scholar
  60. 60.
    Wahli, W., J.B. Dawid, G.U. Ryffel, and R. Weber. 1981. Vitellogenesis and vitellogenin gene family. Science 212: 298–304.PubMedCrossRefGoogle Scholar
  61. 61.
    Wiborg, 0., J. Hyldig-Nielsen, E. Jensen, K. Paludan, and K. Marcker. 1982. The nucleotide sequences of two leghemoglobin genes from soybean. Nucl. Acids Rec. 10: 3487–3494.Google Scholar
  62. 62.
    Wienand, U., C. Bruschke, and G. Felix. 1979. Cloning of double-stranded DNAs derived from polysomal mRNA of maize endosperm: Isolation and characterization of zein clones. Nucl. Acids Res. 6: 2707–2715.Google Scholar
  63. 63.
    Wienand, U., P. Langridge, and G. Feix. 1981. Isolation and characterization of a genomic sequence of maize coding for a zein gene. Mol. Gen. Genet. 182: 440–444.Google Scholar
  64. 64.
    Zaret, K.S., and F. Sherman. 1982. DNA sequence required for efficient transcription-termination in yeast. Cell 28: 563–573.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Joachim Messing
    • 1
  • Daniel Geraghty
    • 1
  • Gisela Heidecker
    • 1
  • Nien-Tai Hu
    • 1
  • Jean Kridl
    • 1
  • Irwin Rubenstein
    • 1
  1. 1.Department of Biochemistry and Department of Genetics and Cell BiologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations