InVitroPlant Transformation Systems Using Liposomes and Bacterial Co-Cultivation

  • Robb T. Fraley
  • Rob B. Horsch
Part of the Basic Life Sciences book series (BLSC, volume 26)


The development of efficient methods for introducing nucleic acids into plant cells is critical to the successful application of molecular genetic approaches to plant systems. Two methods have been developed for this purpose: 1) liposome-mediated delivery and 2) in vitro transformation of protoplasts by co-cultivation with Agrobacterium tumefaciens cells.

Liposome-mediated delivery of tobacco mosaic virus (TMV) RNA into protoplasts and resulting virus production has been used as an assay for determining incubation conditions which favor increased uptake of liposomal contents by plant cells. Under optimal conditions, the liposome method was found to be 10–1,000 times more efficient than other methods commonly used for introducing nucleic acids into plant cells.

The co-cultivation method, initially developed by Marton et al., (12) has been improved and extended to use with petunia protoplasts. In vitro transformants have been obtained with a variety of A tumefaciens strains at efficiencies near 10−1. This method has been used to obtain transformants with avirulent bacterial strains which contain disarmed Ti plasmids. The implications of both these methodologies for plant genetic engineering is discussed.


Tobacco Mosaic Virus Virus Production Liposome Preparation Plant Protoplast Tobacco Protoplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Müller, A., and R. Grafe. 1978. Mol. Gen. Genet. 161: 67–72.CrossRefGoogle Scholar
  2. 1a.
    Somerville, C., and W. Ogren. 1981. Trends in Biochem. 7: 171–176.CrossRefGoogle Scholar
  3. 2.
    King, J., R. Horsch, and A. Savage. 1980. Planta 149: 480–487.CrossRefGoogle Scholar
  4. 3.
    Horsch, R., and G. Jones. 1980. In Vitro 16: 103–108.CrossRefGoogle Scholar
  5. 4.
    Caboche, M. 1980. Planta 149: 7–18.CrossRefGoogle Scholar
  6. 5.
    Matzke, A., and M.-D. Chilton. 1981. J. Mol. Appl. Genet. 1: 39–49.PubMedGoogle Scholar
  7. 6.
    Leemans, J., C. Shaw, R. Deblaere, H. DeGreve, J. Hernalsteens, M. Maes, M. Van Montagu, and J. Schell. 1981. J. Mol. Appl. Genet. 1: 149–164.PubMedGoogle Scholar
  8. 7.
    Davey, M., E. Cocking, J. Freeman, W. Pearce, and I. Tudor. 1980. Plant Sci. Lett. 18: 307–313.CrossRefGoogle Scholar
  9. 8.
    Krens, F., L. Molendijk, G. Wullems, and R. Schilperoort. 1982. Nature 296: 72–74.CrossRefGoogle Scholar
  10. 9.
    Hasezawa, S., T. Nagata, and K. Syono. 1981. Mol. Gen. Genet. 182: 206–210.CrossRefGoogle Scholar
  11. 10.
    Fraley, R., S. Dellaporta, and D. Papahadjopoulos. 1982. Proc. Natl. Acad. Sci. USA 79: 1859–1863.PubMedCrossRefGoogle Scholar
  12. 11.
    Nagata, T., K. Okada, I. Takebe, and C. Matsui. 1981. Mol. Gen. Genet. 184: 161–165.Google Scholar
  13. 12.
    Marton, L., G. Wullems, L. Molendijk, and R. Schilperoort. 1979. Nature 277: 129–131.CrossRefGoogle Scholar
  14. 13.
    Wullems, G., L. Molendijk, G. Ooms, and R. Schilperoort. 1981. Proc. Natl. Acad. Sci. USA 78: 4344–4348.PubMedCrossRefGoogle Scholar
  15. 14.
    A. Cassells. 1978. Nature 275: 760.CrossRefGoogle Scholar
  16. 15.
    Lurquin, P. 1976. Planta 128: 213–216.CrossRefGoogle Scholar
  17. 16.
    Lurquin, P. 1981. Plant Sci. Lett. 21: 31–40.CrossRefGoogle Scholar
  18. 17.
    Ostro, M., D. Lavelle, W. Paxton, B. Matthews, and D. Giacomoni. 1980. Arch. Biochem. Biophys. 201: 392–402.PubMedCrossRefGoogle Scholar
  19. 18.
    Matthews, B., S. Dray, Widholm, J., and M. Ostro. 1979. Planta 145: 37–44.CrossRefGoogle Scholar
  20. 19.
    Rollo, F., M. Galli, and B. Parisi.. 1981. Plant Sci. Lett. 20: 347–354.CrossRefGoogle Scholar
  21. 20.
    Matthews, B., and D. Cress. 1981. Planta 153: 90–94.CrossRefGoogle Scholar
  22. 21.
    H. Uchimiya. 1981. Plant Physiol. 67: 629–632.PubMedCrossRefGoogle Scholar
  23. 22.
    Lurquin, P., R. Sheehy, and N. Rao. 1981. FEBS Lett. 125: 183–187.CrossRefGoogle Scholar
  24. 23.
    Uchimiya, H., and H. Harada. 1981. Plant Physiol. 68: 1027–1030.PubMedCrossRefGoogle Scholar
  25. 24.
    Lurquin, P., and R. Sheehy. 1982. Plant Sci. Lett. 25: 133–146.CrossRefGoogle Scholar
  26. 25.
    Fraley, R., S. Subramani, P. Berg, and D. Papahadjopoulos. 1980. J. Biol. Chem. 255: 10431–10435.PubMedGoogle Scholar
  27. 26.
    Fraley, R., R. Straubinger, G. Rule, L. Springer, and D. Papahadjopoulos. 1981. Biochemistry 20: 6978–6987.PubMedCrossRefGoogle Scholar
  28. 27.
    Szoka, F., and D. Papahadjopoulos. 1978. Proc. Natl. Acad. Sci. USA 75: 4194–4198.PubMedCrossRefGoogle Scholar
  29. 28.
    Wilschut, J., N. Düzqünes, R. Fraley, and D. Paphadjopoulos. 1980. Biochemistry 19: 6011–6021.PubMedCrossRefGoogle Scholar
  30. 29.
    Fukunaga, Y., T. Nagata, and I. Takebe. 1981. Virology 113: 752–760.PubMedCrossRefGoogle Scholar
  31. 30.
    Aoki, S., and I. Takebe. 1969. Virology 39: 439–445.PubMedCrossRefGoogle Scholar
  32. 31.
    Sarkar, S., M. Upadhya, and G. Melchers. 1974. Mol. Gen. Genet. 135: 1–9.PubMedCrossRefGoogle Scholar
  33. 32.
    Loesch-Fries, L., and T. Hall. 1980. J. Gen. Virol. 47: 323–332.CrossRefGoogle Scholar
  34. 33.
    Ausubel, F., K. Bahnsen, M. Hanson, A. Mitchell, and H. Smith. 1980. PBM Newsletter 1: 26–32.Google Scholar
  35. 34.
    Otsuki, Y., and I. Takebe. 1969. Virology 38: 497–501.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Robb T. Fraley
    • 1
  • Rob B. Horsch
    • 1
  1. 1.Molecular Biology DepartmentMonsanto Co.St. LouisUSA

Personalised recommendations