Advertisement

Focusing on a Particular Model of Cell Differentiation: The Vertebrate Eye Lens

  • L. Simmonneau

Abstract

The vertebrate eye lens represents a suitable organ for the study of fundamental biological mechanisms. Its several features makes it a useful system for investigating, at a molecular level, the processes which control the different states of differentiation. Furthermore, such a study offers to contribute to our knowledge of ageing, a process still only partially understood.

Keywords

Chick Embryo Neural Retina Lens Epithelial Cell Lens Protein Lens Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Kefalides, M.A. (1971). Structure and biosynthesis of basement membranes. Int. Rev. Exp. Pathol., 10, 1.PubMedGoogle Scholar
  2. 2).
    Appleby, D.W. and Modak, S.P. (1977). DNA degradation in terminally differentiating lens fiber cells from chick embryos. Proc. Natl. Acad. Sci. USA, 74, 5579.PubMedCrossRefGoogle Scholar
  3. 3).
    Ortwerth, B.J. and Byrnes, R.J. (1972). Further studies on the purification and properties of a ribonuclease inhibitor from lens cortex. Exp. Eye Res.,14, 114.PubMedCrossRefGoogle Scholar
  4. 4).
    Van Der Broek, W.G.M., Koopmans, M.A.G. and Bloemendal, H. (1974). Electrophoretic identity and rapid detection on gel slices of the alkaline RNAse inhibitor from several organs. Mol. Biol. Rep.,1, 295.PubMedCrossRefGoogle Scholar
  5. 5).
    Rafferty, N.S. and Rafferty, K.A. (1981). Cell population kinetics of the mouse lens epithelium. J. of Cell Physiol., 107, 309.CrossRefGoogle Scholar
  6. 6).
    Bloemendal, H. (1979). Lens proteins as markers of terminal differentiation. Ophthal. Res., 11, 243.CrossRefGoogle Scholar
  7. 7).
    Ramaekers, F.C.S., Selten-Versteegen, A.M.E., Benedetti, E.L., Dunia, I. and Bloemendal, H. (1980). In vitro synthesis of the major lens membrane protein. Proc. Natl. Acad. Sci. USA, 77, 725.PubMedCrossRefGoogle Scholar
  8. 8).
    Broekhuyse, R.M., Kuhlman, E.D. and Stols, A.L.H. (1976). Lens membranes. VII. MIP is an immunologically specific component of lens fiber membranes and is identical with 26K band protein. Exp. Eye Res., 23, 365.PubMedCrossRefGoogle Scholar
  9. 9).
    Kibbelaar, M.A. and Bloemendal, H. (1979). Fractionation of the water insoluble proteins from calf lens. Exp. Eye Res., 29, 679.PubMedCrossRefGoogle Scholar
  10. 10).
    Berzelius, J.J. (1830). Lärobok, Kicmen, Deel 2, 512.Google Scholar
  11. 11).
    Manski, W. and Malinowski, K. (1978). The evolutionary sequence and quantities of different antigenic determinants of calf lens alpha crystallins. Immunochemistry, 15, 781.PubMedCrossRefGoogle Scholar
  12. 12).
    Harding, J.J. and Dilley, K.J. (1976). Structural proteins of the mammalians lens: a review with emphasis on changes in development, ageing and cataract. Exp. Eye Res., 22, 1.PubMedCrossRefGoogle Scholar
  13. 13).
    Palmer, W.G. and Papaconstantinou, J. (1968). Biochemical properties of α crystallins during lens development. In: Symp. of Internat. Soc. Cell Biol. (ed. K.B. Warren), tome 7, 165.Google Scholar
  14. 14).
    Bloemendal, H. (1981). The lens proteins. In: Molecular and Cellular Biology of the Lens (ed. H. Bloemendal), p. 1, Wiley-Interscience Publication.Google Scholar
  15. 15).
    Slingsby, C. and Croft, L.R. (1978). Structural studies on γ-crystallin fraction IV: A comparison of the cysteine-containing tryptic peptides with the corresponding amino-acid sequence of y-crystallin fractionII. Exp. Eye Res., 26, 291.PubMedCrossRefGoogle Scholar
  16. 16).
    Bhat, S.P. and Piatigorsky, J. (1979). Molecular cloning and partial characterization of δ-crystallin cDNA sequences in a bacterial plasmid. Proc. Natl. Acad. Sci. USA, 76, 3299.PubMedCrossRefGoogle Scholar
  17. 17).
    Dodemont, H.J., Andreoli, P.M., Moormann, R.J.M., Ramaekers, F.C.S., Schoenmakers, J.G.S. and Bloemendal, H. (1981). Molecular cloning of mRNA sequences encoding rat lens crystal lins. Proc. Natl. Acad. Sci. USA, 78, 5320.PubMedCrossRefGoogle Scholar
  18. 18).
    Mcavoy, J.W. (1978). Cell division, cell elongation and distribution of α-, β- and γ-crystallins in the rat lens. J. Embryo!. Exp. Morphol., 44, 149.Google Scholar
  19. 19).
    Zwaan, J. and Ikeda, A. (1968). Macromolecular events during differentiation of the chicken lens. Exp. Eye Res., 7, 301.PubMedCrossRefGoogle Scholar
  20. 20).
    Mcdevitt, O.S. and Brahma, S.K. (1981). Ontogeny and localization of the α, β and γ-crystallins in newt eye lens development. Dev. Biol., 84, 449.PubMedCrossRefGoogle Scholar
  21. 21).
    Mcavoy, J.W. (1980). Induction of the eye lens. Differentiation, 17, 137.PubMedCrossRefGoogle Scholar
  22. 22).
    Konyukhou, B.V., Malinina, N.A., Platonov, E.S. and Yakovlev, M.J. (1978). Immunohistochemical study of crystallin synthesis in mouse lens morphogenesis. Biol. Bull. Acad. Sci. USSR, 5, 397.Google Scholar
  23. 23).
    Coulombre, A.J. and Coulombre, J.L. (1963). Lens development fibre elongation and lens orientation. Science, 142, 1489.Google Scholar
  24. 24).
    Genis-Galvalez, J.M., Santos-Gutierrez, L. and Rios-Gonzales, A. (1967). Causal factors in corneal development: an experimental analysis in the chick embryo. Exp. Eye Res., 6, 48.CrossRefGoogle Scholar
  25. 25).
    Speman, M. (1901). Über Korrelationen in der Entwicklung des Auges. Verh. Anat. Ges., 15, 61.Google Scholar
  26. 26).
    Mcavoy, J.W. (1980). β- and γ-crystallin synthesis in rat lens epithelium explanted with neural retina. Differentation, 17, 85.CrossRefGoogle Scholar
  27. 27).
    Van Der Starre, H. (1977). Biochemical investigation of lens induction in vitro. II. Demonstration of the induction substance. Acta Morphol. Neerl. Scand., 16, 109.Google Scholar
  28. 28).
    Hunt, H.H. (1961). A study of the fine structure of the optic vesicle and lens placode of the chick embryo during induction. Dev. Biol., 3, 175.PubMedCrossRefGoogle Scholar
  29. 29).
    Beebe, D.C., Feagans, D.E. and Jebens, H.A.H. (1980). Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation. Proc. Natl. Acad. Sci. USA, 77, 490.PubMedCrossRefGoogle Scholar
  30. 30).
    Mcavoy, J.W. (1980). Cytoplasmic processes interconnect lens placode and optic vesicle during eye morphogenesis. Exp. Eye Res., 31, 527.PubMedCrossRefGoogle Scholar
  31. 31).
    Karkinen-Jaaskelainen, M. (1978). Permissive and directive interactions in lens induction. J. Embryol. Exp. Morphol.,44, 167.PubMedGoogle Scholar
  32. 32).
    Barabanov, V.M. and Fedtsova, N.G. (1982). The distribution of lens differentiation capacity in the head ectoderm of chick embryos. Differentiation, 21, 183.PubMedCrossRefGoogle Scholar
  33. 33).
    Okada, T.S., Eguchi, G. and Takeichi, M. (1973). The retention of differentiated properties of lens epithelial cells in clonal cell culture. Dev. Biol., 34, 321PubMedCrossRefGoogle Scholar
  34. 34).
    De Pomerai, D.I., Pritchard, D.J. and Clayton, R.M. (1977). Biochemical and immunological studies of lentoid formation in cultures of embryonic chick neural retina of day-old chick lens epithelium. Dev. Biol., 60, 416.PubMedCrossRefGoogle Scholar
  35. 35).
    Hamada, Y. and Okada, T.S. (1977). The differentiating ability of rat lens epithelium cells in cell culture. Dev. Growth and Differ.,19, 265.CrossRefGoogle Scholar
  36. 36).
    Rüssel, P., Fukui, H.N., Tsunematsu, Y., Huang, F.L. and Kinoshita, J.M. (1977). Tissue culture of lens epithelial cells from normal and Nakano mice. Invest. Ophtalmol. Visual. Sci., 16, 243.Google Scholar
  37. 37).
    De Pomerai, D.W., Clayton, R.M. and Pritchard, D.J. (1978). Delta crystallin accumulation in chick lens epithelial cultures: dependence on age and genotype. Exp. Eye Res., 27, 365.PubMedCrossRefGoogle Scholar
  38. 38).
    Yamada, T. (1977). Control mechanisms in cell-type conversion in newt lens regeneration. In: Monographs in Developmental Biology (ed. A. Wolsky), Vol. 13, Karger, Basel, New York.Google Scholar
  39. 39).
    Campbell, J.C. (1965). An immunofluorescent study of lens regeneration in larval Xenopus laevis. J. Embryol. Exp. Morphol., 13, 171.PubMedGoogle Scholar
  40. 40).
    Williams, L.A. (1970). The effect of a normal lens on lens regeneration in Notophthalmus viridescens viridesoens . Am. Zool.,10, 322.Google Scholar
  41. 41).
    Eguchi, G., Abe, S. and Watanabe, K. (1974). Differentiation of lens like structures from newt iris epithelial cells in vitro. Proc. Natl. Acad. Sci. USA, 71, 5052.PubMedCrossRefGoogle Scholar
  42. 42).
    Okada, T.S., Itoh, Y., Watanabe, K. and Eguchi, G. (1975). Differentiation of lens in culture of neural retinal cells of chick embryos. Dev. Biol., 45, 318.PubMedCrossRefGoogle Scholar
  43. 43).
    Masasuke, A. and Okada, T.S. (1978). Effects of culture media on the “foreign” differentiation of lens and pigment cells from neural retina in vitro. Dev. Growth and Differ., 20, 71.CrossRefGoogle Scholar
  44. 44).
    Okada, T.S., Yasuda, K., Hayashi, M., Hamada, Y. and Eguchi, G. (1977). Lens differentiation in cultures of neural retina cells of human foetuses. Dev. Biol., 60, 305.PubMedCrossRefGoogle Scholar
  45. 45).
    Eguchi, G. (1976). “Transdifferentiation” in vertebrate cells in cell culture. In: Embryogenesis in mammals. Ciba Foundation Symposium, 40, 241.Google Scholar
  46. 46).
    Eguchi, G. and Okada, T.S. (1973). Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: a demonstration of a switch of cell type in clonal cell culture. Proc. Natl. Acad. Sci. USA, 70, 1495.PubMedCrossRefGoogle Scholar
  47. 47).
    Clayton, R.M., Thomson, I. and De Pomerai, D.I. (1979). Relationship between crystallin mRNA expression in retina cells and their capacity to re-differentiate into lens cells. Nature, 282, 628.PubMedCrossRefGoogle Scholar
  48. 48).
    Glasser, D., Iwig, M., Ansorge, S. and Fischer, C. (1976). Investigations of the differentiation of bovine lens epithelial cells in vitro. Ophthal. Res.,8, 283.CrossRefGoogle Scholar
  49. 49).
    Creighton, M.D., Mousa, G.Y. and Trevithick, J.R. (1976). Differentiation of rat lens epithelial cells in tissue culture. (I) Effects of cell density, medium and embryonic age. Differentiation, 6, 155.PubMedCrossRefGoogle Scholar
  50. 50).
    Miller, G.G., Blair, D.G., Hunter, E., Mousa, G.Y. and Trevithick, J.R. (1979). Differentiation of rat lens epithelial cells in tissue culture (III). Functions in vitro of a transformed rat lens epithelial cell line. Develop. Growth and Differ., 21, 19.Google Scholar
  51. 51).
    Weinstein, B.I., Schwartz, J., Lonial, H., Marcia Ochoa Dominguez, Gordon, G., Hochstadt, J., Southern, D.B., Dun, M. and Southern, L. (1982). Normal and conditionally transformed bovine lens epithelial cell lines containing alpha and gamma crystallins. Exp. Eye. Res., 34, 71.PubMedCrossRefGoogle Scholar
  52. 52).
    Vermorken, A.J.M. and Bloemendal, H. (1978). α-crystallin polypeptides as markers of lens cell differentiation. Nature, 271, 779.PubMedCrossRefGoogle Scholar
  53. 53).
    Vermorken, A.J.M., Groeneveld, A.A., Hilderink, J.M.H.C., De Waal, R. and Bloemendal, H. (1977). Dedifferentiation of lens epithelial cells in tissue culture. Mol. Biol. Reports, 3, 371.CrossRefGoogle Scholar
  54. 54).
    Simmonneau, L., Herve, B., Jazquemin, E. and Courtois, Y. (1982). State of differentitation of bovine epithelial lens cells in vitro. Modulation of the synthesis and of the polymerisation of specific proteins (crystallins) and non specific proteins in relation to cell divisions, submitted for publication.Google Scholar
  55. 55).
    Arruti, C. and Courtois, Y. (1978). Morphological changes and growth stimulation of bovine epithelial lens cells by a retinal extract in vitro. Exp. Cell Res., 117, 283.PubMedCrossRefGoogle Scholar
  56. 56).
    Simmonneau, L., Herve, B., Jacquemin, E. and Courtois, Y. (1982). State of differentiation of bovine epithelial lens cells in vitro. Relationship between the variation of the cell shape and the synthesis of crystallins, submitted for publication.Google Scholar
  57. 57).
    Courtois, Y., Simonneau, L., Tassin, J., Laurent, M.V. and Malaise, E. (1978). Spontanous transformation of bovine lens epithelial cells. Kinetics analysis and differentiation in monolayers and in nude mice. Differentiation, 10, 23.Google Scholar
  58. 58).
    Laurent, M., Kern, P., Courtois, Y. and Regnault, F. (1981). Synthesis of types I, III and IV collagen by bovine lens epithelial cells in long term cultures. Exp. Cell Research, 134, 23.CrossRefGoogle Scholar
  59. 59).
    Craig, S.P. and Piatigorsky, J. (1973). Cell elongation and δ-crystallin synthesis without RNA synthesis in cultured early embryonic chick lens epithelium. Biochem. Biophys. Acta, 299, 642.PubMedCrossRefGoogle Scholar
  60. 60).
    Piatigorsky, J., Webster, H. de F. and and Craig, S.P. (1972). Protein synthesis and ultrastructure during the formation of embryonic chick lens fibers in vivo and in vitro. Dev. Biol., 27, 176.PubMedCrossRefGoogle Scholar
  61. 61).
    Piatigorsky, J., Webster, H. de F. and Wollberg, M. (1972). Cell elongation in the cultured embryonic chick lens epithelium with and without protein synthesis. J. Cell Biol., 55, 82.PubMedCrossRefGoogle Scholar
  62. 62).
    Beebe, D.C. and Piatigorsky, J. (1977). The control of 6-crystallin gene expression during lens cell development: dissociation of cell elongation, cell division, 6-crystallin synthesis, and 6-crystallin mRNA accumulation. Dev. Biol., 59, 174.PubMedCrossRefGoogle Scholar
  63. 63).
    Milstone, L.M., Zelenka, P. and Piatigorsky, J. (1976). 6-crystallin mRNA in chick lens cell: mRNA accumulates during differential stimulation of 6-crystallin synthesis in cultured cells. Dev. Biol., 48, 197.PubMedCrossRefGoogle Scholar
  64. 64).
    Thomson, I., Wilkinson, C.E., Jackson, J.F., De Pomerai, D.I., Clayton, R.M., Truman, D.E.S. and Williamson; R. (1978). Isolation and cell free translation of chick lens crystal lin mRNA during normal development and transdifferentiation of neural retina. Dev. Biol., 65, 372.PubMedCrossRefGoogle Scholar
  65. 65).
    Hoffman-Lieberman, B., Lieberman, D. and Sachs, L. (1981). Control mechanisms regulating gene expression during normal differentiation of myeloid leukemic cells: differentiation defective mutants blocked in mRNA production and mRNA translation.Google Scholar
  66. 66).
    Chen, J.H. and Spector, A. (1974). The presence of a polyadenylic acid-dependent DNA polymerase in calf lens. Exp. Eye Res.,19, 389.PubMedCrossRefGoogle Scholar
  67. 67).
    Shinohara, T. and Piatigorsky, J. (1980). Persistance of crystal lin messenger RNAs with reduced translation in hereditary cataract in mice. Science, 210, 914.PubMedCrossRefGoogle Scholar
  68. 68).
    Asselbergs, F.A.M., Peters, W.H.M., Van Venrooij, W.J. and Bloemendal, H. (1978). Inhibition of translation of lens mRNAs in a messenger dependent reticulocyte lysate by cap analogues. Biochem., Biophys. Acta, 520, 577.CrossRefGoogle Scholar
  69. 69).
    Weill, J.C., Lecat, G., Vincent, A., Civelli, O. and Pouliquen, Y. (1980). Messenger RNAs for cataractous lens are also present on normal lens polyribosomes. Eur. J. Biochem., 11, 593.CrossRefGoogle Scholar
  70. 70).
    Ortwerth, B.J., Horwitz, J. and Chu-Der, O.M.Y. (1982). The induction of tRNAphe in mammalian lens cortex: a possible control point in the synthesis of a α-crystallin. Exp. Eye Res.,34 767.CrossRefGoogle Scholar
  71. 71).
    Jones, R.E., De Feo, D. and Piatigopsky, J. (1981). Transcription and site-specific hypomethylation of the δ-crystallin genes in the embryonic chickens lens. The Journal of Biological Chemistry, 256, 8172.PubMedGoogle Scholar
  72. 72).
    Clayton, R.M. (1978). Divergence and convergence in lens cell differentiation: regulation of the formation and specific content of lens fibre cells. In: Stem cells and Tissue Homeostasis (eds, B.I. Lord C.S. Potten and R.J. Cole), p. 115, Cambridge University Press.Google Scholar
  73. 73).
    Bloemendal, H. (1977). The vertebrate eye lens. A useful system for the study of fundamental biological process on a molecular level. Science, 197, 127.PubMedCrossRefGoogle Scholar
  74. 74).
    Piatigorsky, J. (1981). Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation, 19, 134.PubMedCrossRefGoogle Scholar
  75. 75).
    Herve, B., Jacquemin, E. and Lescure, B. (1982). Endogenous nuclease activity in chick embryo lens cells. Cell Diff., in press.Google Scholar
  76. 76).
    Vandenhaute, J. (1981). Influence de l’âge sur les caractéristiques structurales et les propriétés fonctionelles de la machinerie de synthèse protéique dans le fois de souris. Thesis. Facultés Universitaires Notre Dame de la Paix (Namur-Belgique).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • L. Simmonneau
    • 1
  1. 1.Unité de Recherches GérontologiquesINSERM U 118ParisFrance

Personalised recommendations