Advertisement

Changes of Protein Glycosylation During Differentiation of Mouse Embryonal Carcinoma Cells

  • G. Cossu
  • L. Warren

Abstract

The search for a role of carbohydrates in mammalian development has been long hampered by the minute amounts of material available. Recently, the establishment of cell lines from mammalian teratocarcinomas has offered an alternative model for the study of early embryogenesis in mammals (1). Specifically, several stem cell lines, capable of either spontaneous or drug-induced differentiation, allow a biochemical study of certain aspects of early differentiation.

Keywords

Embryonal Carcinoma Cell Teratocarcinoma Cell Plasma Fibronectin Carbohydrate Group Cellular Fibronectin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Martin, G.R. (1980). Teratocarcinomas and mammalian embryo-genesis. Science, 209, 768.PubMedCrossRefGoogle Scholar
  2. 2).
    Muramatsu, T., Gachelin, G., Nicolas, J.F., Condamne, H., Jakob, H. and Jacob, F. (1978). Carbohydrate structure and cell differentiation: unique properties of fucosylglycopeptides isolated from embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA, 75, 2315.PubMedCrossRefGoogle Scholar
  3. 3).
    Muramatsu, T., Gacheline, G., Damoneville, M., Delarbre, C. and Jacob, F. (1979). Cell surface carbohydrates of embryonal carcinoma cells: polysaccharide chains of F9 antigens and receptors for two lectins, FBP and PNA. Cell, 18, 183.PubMedCrossRefGoogle Scholar
  4. 4).
    Andrews, P.W., Knowles, B.B., Cossu, G. and Solter, D. (1981). Teratocarcinoma and mouse embryo cell surface antigens: characterization of the molecule(s) carrying the SSEA-1 antigenic determinant. In: Teratocarcinoma and the Cell Surface (eds, T. Muramatsu and Y. Ikawa), p. 103, Japan Sci. Soc. Press Tokyo.Google Scholar
  5. 5).
    Muramatsu, T., Gachelin, G. and Jacob, F. (1979). Characterization of glycopeptides isolated from membranes of F9 embryonal carcinoma cells. Biochem. Biophys. Acta, 587, 392.PubMedCrossRefGoogle Scholar
  6. 6).
    Muramatsu, H. and Muramatsu, T. (1982). Decreased synthesis of large fucosylglycopeptides during differentiation of embryonal carcinoma cells induced by retinoic acid and dibutyril cyclic AMP. Develop. Biol., 90, 441.PubMedCrossRefGoogle Scholar
  7. 7).
    Etchinson, J.R., Summers, D.F. and Georgopoulos, C. (1981). Variations in the structure of radiolabelled glycopeptides from glycoprotein of Vescicular Stomatitis Virus grown in four mouse teratocarcinoma cell lines. J. Biol. Chem., 256, 3366.Google Scholar
  8. 8).
    Ruoslahti, E., Hayman, E.G., Pierschbacher, M. and Engvall, E. (1982). Fibronectin: purification, immunochemical properties and biological activities. Meth. Enzymol., 82, 803.PubMedCrossRefGoogle Scholar
  9. 9).
    Yamada, K.M. and Kennedy, D.W. (1979). Cell surface and plasma fibronectins are similar but not identical. J. Cell Biol., 80, 432.CrossRefGoogle Scholar
  10. 10).
    Wagner, D.D., Ivatt, R., Destree, A.T. and Hynes, R.O. (1981). Similarities and differences between the fibronectins of normal and transformed cells. J. Biol. Chem.,256, 11708.PubMedGoogle Scholar
  11. 11).
    Pande, H., Corkill, J., Sailor, R. and Shively, J.E. (1981). Comparative structural studies on human plasma and amniotic fluid fibronectins. Biochem. Biophys. Res. Commun.,10, 265.CrossRefGoogle Scholar
  12. 12).
    Ruoslahti, E., Jalanko, H., Coming, D.E., Neville, A.M. and Raghavan, D. (1981). Fibronectin from human germ-cell tumours resemble amniotic fluid fibronectin. Int. J. Cancer, 27, 763.Google Scholar
  13. 13).
    Engvall, E. and Ruoslahti, E. (1977). Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer, 20, 1.Google Scholar
  14. 14).
    Yamada, K.M., Schelesinger, D.H., Kennedy, D.W., and Pastan, I. (1977). Characterization of a major fibroblast cell surface glycoprotein. Biochemistry, 16, 5550.CrossRefGoogle Scholar
  15. 15).
    Fukuda, M. and Hakomori, S. (1979). Carbohydrate structure of galactoprotein, a major transformation sensitive glycoprotein released from hamster fibroblasts. J. Biol. Chem., 254, 5451.PubMedGoogle Scholar
  16. 16).
    Cossu, G. and Warren, L. (1982). Lactosaminglycans and heparan sulfate are covalently bound to fibronectins synthesized by mouse stem teratocarcinoma cells. Submitted for publication.Google Scholar
  17. 17).
    Yamada, K.M., Kennedy, D.W., Kimata, K. and Pratt, M. (1980). Characterization of fibronectin interactions with glycosaminoglycans and idenfication of active proteolytic fragments. J. Biol. Chem.,255, 6055.Google Scholar
  18. 18).
    Oohira, A., Wight, T.N., Mcpherson, J. and Bornstein, P. (1982). Biochemical and ultrastructural studies of proteoheparan sulfates synthesized by PYS-2, a basement membrane-producing cell line. J. Cell Biol., 92, 357.PubMedCrossRefGoogle Scholar
  19. 19).
    Leivo, I., Alitalo, K., Risteli, L., Vaheri, A., Timpl, R. and Wartiovaara, J. (1982). Basal lamina glycoproteins laminin and type IV collagen are assembled into a fine-fibered matrix in cultures of a teratocarcinoma-derived endodermal cell lines. Exp. Cell Res., 137, 15.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • G. Cossu
    • 1
    • 2
  • L. Warren
    • 1
  1. 1.The Wistar InstitutePhiladelphiaUSA
  2. 2.Istituto di Istologia ed Embriologia generaleUniversita’ di RomaItaly

Personalised recommendations