Advertisement

Approaches To the Biochemistry of Differentiation of Mouse Embryonal Carcinoma Cells

  • M. J. Evans
  • R. H. Lovell-Badge
  • D. Latchman
  • A. Stacey
  • H. Brzeski

Abstract

A complete interrelationship has now been demonstrated between mouse embryonal carcinoma (EC) cells and normal mouse embryos (1, Figure 1). EC cells are probably homologous with 5.5 day old mouse embryo epiblast (2,3).

Keywords

Embryoid Body Embryonal Carcinoma Endodermal Cell Embryonal Carcinoma Cell Visceral Endoderm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Evans, M.J. and Kaufman, M.H. (1981). Establishment in culture of pluri potential cells from mouse embryos. Nature, 292, 154.PubMedCrossRefGoogle Scholar
  2. 2).
    Evans, M.J. (1981). Origin of mouse embryonal carcinoma cells and the possibility of their direct isolation into tissue culture. J. Reprod. Fert. 62, 625.CrossRefGoogle Scholar
  3. 3).
    Evans, M.J. (1982). BSDB symposium, in preparation.Google Scholar
  4. 4).
    Lovell-Badge, R.H. and Evans, M.J. (1980). Changes in protein synthesis during differentiation of embryonal carcinoma cells, and a comparison with embryo cells. J. Embryol. Exp. Morphol., 59, 187.PubMedGoogle Scholar
  5. 5).
    Cooper, A.R., Kurkinen, M., Taylor, A. and Hogan, B.L.M. (1981). Studies on the biosynthesis of laminin by murine parietal endoderm cells. Eur. J. Biochem., 119, 189.PubMedCrossRefGoogle Scholar
  6. 6).
    Dziadek, M. and Adamson, E.D. (1978). Localization and synthesis of alpha-fetoprotein in post-implantation mouse embryos. J. Embryol. Exp. Morphol., 43, 289.PubMedGoogle Scholar
  7. 7).
    Adamson, E.D. (1982). The location and synthesis of transferrin in mouse embryos and teratocarcinoma cells. Developmental Biology, 91, 227.PubMedCrossRefGoogle Scholar
  8. 8).
    Adamson, E.D., Evans, M.J. and Magrane, G.G. (1977). Biochemical markers of the progress of differentiation in cloned teratocarci noma cell lines. Eur. J. Biochem., 79, 607.PubMedCrossRefGoogle Scholar
  9. 9).
    Latchman, D.S. (1981). Control of alpha feto-protein gene expression in the mouse. Ph.D. Thesis, University of Cambridge.Google Scholar
  10. 10).
    Alwine, J.C., Kemp, K.J., Parker, B.A., Reiser, J., Reinert, J., Stack, G.R. and Wahl, M. (1979). Detection of specific RNAs or specific fragments of DNA by fractionation in gels and transfer to diazobenzyloxymethyl paper. Methods in Enzymology, 68, 220.PubMedCrossRefGoogle Scholar
  11. 11).
    Weisbrod, S. (1982). Active Chromatin. Nature, 297, 289.PubMedCrossRefGoogle Scholar
  12. 12).
    Affara, N.A., Jacquet, M., Jakob, H., Jacob, F. and Gros, F. (1977). Comparison of polysomal polyadenylated RNA from embryonal carcinoma and committed myogenic and erythropoetic cell lines. Cell, 12, 509.PubMedCrossRefGoogle Scholar
  13. 13).
    Duncan, R. and Mcconckey, E.H. (1982). How many proteins are there in a typical mammalian cell?. Clin. Chem. 28, 749.PubMedGoogle Scholar
  14. 14).
    Bravo, R. and Celis, J.E. (1982). Up-dated catalogue of HeLa cell proteins: Percentages and characteristics of the major cell polypeptides labelled with a mixture of 16 [14C]-amino acids. Clin. Chem., 28, 766.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • M. J. Evans
    • 1
  • R. H. Lovell-Badge
    • 1
  • D. Latchman
    • 1
  • A. Stacey
    • 1
  • H. Brzeski
    • 1
  1. 1.Department of GeneticsUniversity of CambridgeCambridgeUK

Personalised recommendations