Organization of Muscle-Specific Genes in the Rodent Genome

  • H. Czosnek
  • Y. Carmon
  • M. Shani
  • U. Nudel
  • P. E. Barker
  • F. H. Ruddle
  • D. Yaffe


In vitro myogenesis offers and experimental model for the study of the molecular mechanisms involved in gene expression during cell differentiation. Terminal differentiation of muscle cells is characterized by the fusion of mononucleated myoblasts into multinucleated fibers. The morphological changes are accompanied by biochemical modifications, including the onset or a great increase in the synthesis of the major muscle contractile proteins, their regulatory polypeptides and enzymes needed to produce the energy for muscle contraction (reviewed in ref. 1). Several of these proteins (actin, myosin heavy chain, tropomyosin, creatine kinase) have been shown to be members of families of closely related isoforms, some of which are muscle-specific and are synthesized during terminal differentiation, others are present in many cell types. The capacity of myogenic cells (as well as other precursor cells) to proliferate during extended periods without expressing the genes involved in terminal differentiation (2, 3), indicate the existence of mechanisms which retain the latent program of gene expression, and mechanisms of gene activation which recognize these genes.


Myosin Heavy Chain Myosin Light Chain Actin Gene Hybrid Cell Line Myosin Heavy Chain Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Buckingham, M.E. (1977). The international review of biochemistry: Biochemistry of cell differentiation II, (ed., J. Paul), Vol. 15, p. 269, University Park Press, Baltimore.Google Scholar
  2. 2).
    Yaffe, D. (1968). Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA., 61, 477.PubMedCrossRefGoogle Scholar
  3. 3).
    Yaffe, D. and Saxel, O. (1977). A myogenic cell line with altered serum requirements for differentiation. Differentiation, 7, 159.PubMedCrossRefGoogle Scholar
  4. 4).
    Weintraub, H. and Groudine, M. (1976). Chromosomal subunits in active genes have an altered conformation. Science, 193, 848.PubMedCrossRefGoogle Scholar
  5. 5).
    Weisbrod, S. (1982). Active chromatin. Nature, 297, 289.PubMedCrossRefGoogle Scholar
  6. 6).
    Stalder, J., Groudine, M., Dodgson, J.B., Engle, J.D and Weintraub, H. (1980). Hb switching in chickens. Cell, 19, 973.PubMedCrossRefGoogle Scholar
  7. 7).
    Gazit, B., Cedar, H., Lerer, I. and Voss, R. (1982). Active genes are sensitive to deoxyribonuclease I during metaphase. Science, 217, 648.PubMedCrossRefGoogle Scholar
  8. 8).
    Katcoff, D., Nudel, U., Zevin-Sonkin, D., Carmon, Y., Shani, M., Lehrach, H., Frischauf, A.M. and Yaffe, D. (1980). Construction of recombinant plasmids containing rat muscle actin and myosin light chain DNA sequences. Proc. Natl. Acad. Sci. USA, 77, 960.PubMedCrossRefGoogle Scholar
  9. 9).
    Nudel, U., Katcoff, D., Carmon, Y., Zevin-Sonkin, D., Levy, Z., Shani, M. and Yaffe, D. (1980). Identification of recombinant phages containing sequences for different rat myosin heavy chain genes. Nucl. Acids Res., 8, 2133.PubMedCrossRefGoogle Scholar
  10. 10).
    Nudel, U., Katcoff, D., Zakut, R., Shani, M., Carmon, Y., Finer, M., Czosnek, H., Ginsberg, I. and Yaffe, D. (1982). Isolation and characterization of rat skeletal muscle and cytoplasmic actin genes. Proc. Natl. Acad. Sci. USA, 79, 2763.PubMedCrossRefGoogle Scholar
  11. 11).
    Carmon, Y., Czosnek, H., Nudel, U., Shani, M. and Yaffe, D. (1982). DNAase I sensitivity of genes expressed during myogenesis. Nucl. Acids Res., 10, 3085.PubMedCrossRefGoogle Scholar
  12. 12).
    Elgin, S.C.R. (1982). DNAase I — hypersensitive sites of chromatin. Cell, 27, 413.CrossRefGoogle Scholar
  13. 13).
    Ruddle, F.H. (1981). A new era in mammalian gene mapping: somatic cell genetics and recombinant DNA methodologies. Nature, 294, 115.PubMedCrossRefGoogle Scholar
  14. 14).
    Whalen, R.G., Sell, S.M., Butler-Browne, G.S., Schwartz, K., Bouveret, P. and Pinset-Härström, I. (1981). Three major heavy chain isozymes appear sequentially in rat muscle development. Nature, 292, 805.PubMedCrossRefGoogle Scholar
  15. 15).
    Whalen, R.G., BUGAISKY, L.B., Butler-Browne, G.S., Pinsethärström, I., Schwartz, K. and SELL, M. (1982). Characterization of myosin isoenzymes appearing during rat muscle development. C.S.H. Symposium on Muscle Development, in pressGoogle Scholar
  16. 16).
    Shani, M., Zevin-Sonkin, D., Saxel, O., Carmon, Y., Katcoff, D., Nudel, U. and Yaffe, D. (1981). The correlation between the synthesis of skeletal actin, myosin heavy chain, and myosin light chain and the accumulation of corresponding mRNA sequences during myogenesis. Develop. Biol. 86, 483.PubMedCrossRefGoogle Scholar
  17. 17).
    Czosnek, H., Nudel, U., Shani, M., Barker, P.E., Pravtcheva, D.D., Ruddle, F.H. and YAFFE, D. (1982). The genes coding for the muscle contractile proteins, myosin heavy chain, myosin light chain 2 and skeletal muscle actin are located on three different mouse chromosomes. Embo J., in pressGoogle Scholar
  18. 18).
    Vanderckerkhove, J. and Weber, K. (1979). The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation, 14, 123.CrossRefGoogle Scholar
  19. 19).
    Garrels, J.I. (1979). Changes in protein synthesis during myogenesis in a clonal cell line. Dev. Biol., 73, 134.PubMedCrossRefGoogle Scholar
  20. 20).
    Eickbush, T.H. and Kafatos, F.C. (1982). A walk in the chorion locus of Bombyx mori. Cell, 29, 633.PubMedCrossRefGoogle Scholar
  21. 21).
    Spadling, A.C. (1981). The organization and amplification of two chromosomal domains containing Drosophila chorion genes. Cell, 27, 193.CrossRefGoogle Scholar
  22. 22).
    Lewis, R.A., Wakmimoto, B.T., Denell, R.E. and Kaufman, T.C. (1980). Genetic analysis of antennapedia gene complex. (ANT-C) and adjacent chromosomal regions of Drosophila melanogaster. II. Polytene chromosome segments 84A′84B1,2. Genetics, 95, 383.PubMedGoogle Scholar
  23. 23).
    Hogness, D.S., Saint, R.B., Akam, M.E., Goldschmidt-Clermont, M. and Beachy, P. (1982). A molecular analysis of the bithorax complex in Drosophila. J. Cell Biochem. Supplement 6, p. 263.Google Scholar
  24. 24).
    Fyberg, E.A., Kindle, K.L., Davidson, N. and Sodja, A. (1980). The actin genes of Drosophila: A dispersed multigene family. Cell, 19, 365.CrossRefGoogle Scholar
  25. 25).
    Scheller, R.H., Mcallister, L.B., Crain, W.R., Durica, D.S., Posakony, J.W., Thomas, T.L., Britten, R.J. and Davidson, E.M. (1981). Organization and expression of multiple actin genes in the sea urchin. Mol. Cell Biol. 1, 609.PubMedGoogle Scholar
  26. 26).
    Zakut, R., Shani, M., Givol, D., Neuman, S., Yaffe, D. and Nudel, U. (1982). The nucleotide sequence of the rat skeletal muscle actin gene. Nature, 298, 857.PubMedCrossRefGoogle Scholar
  27. 27).
    D’eustachio, P., Pravtcheva, D., Marcu, K. and Ruddle, F.H. (1980). Chromosomal location of the structural gene cluster encoding murine immunoglubulin heavy chains. J. Exp. Med. 151, 1545.PubMedCrossRefGoogle Scholar
  28. 28).
    D’eustachio, P., Bothwell, S.L.M., Takaro, T.K., Baltimore, D and Ruddle, F.H. (1981). Chromosomal location of structural genes encoding immunoglobulin lambda light chains. J. Exp. Med. 153, 793.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. Czosnek
    • 1
  • Y. Carmon
    • 1
  • M. Shani
    • 1
  • U. Nudel
    • 1
  • P. E. Barker
    • 1
    • 2
  • F. H. Ruddle
    • 1
    • 2
  • D. Yaffe
    • 1
  1. 1.Department of Cell BiologyThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Department of BiologyYale UniversityNew HavenUSA

Personalised recommendations