Advertisement

Cellular Systems and Aspects of Protein Synthesis in the Study of Muscle Cell Differentiation

  • R. G. Whalen

Abstract

Among those systems that molecular biologists have chosen to study terminal differentiation, the genesis of skeletal muscle cells provides many of the advantages required to facilitate experimentation. Mononucleate cells can be grown in cell culture, and the dynamic process of cell fusion followed microscopically. The fusion of these mononucleate cells into multinucleate structures known as myotubes provides a dramatic visual indication that terminal differentiation is taking place (1). The fact that this process takes place in cell culture, allows the experimenter to intervene to modify culture conditions and thus attempt to modify the processes of myogenesis. This is crucial to the dissection of the relations between cell proliferation and cell differentiation. These two phenomena are mutually exclusive in the case of skeletal muscle cells and their myogenic precursors, the myoblasts.

Keywords

Fibroblast Growth Factor Myosin Heavy Chain Myosin Light Chain Contractile Protein Myogenic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Merlie, J.P., Buckingham, M.E. and Whalen, R.G. (1977). Molecular aspects of myogenesis. Current Topics in Developmental Biology (eds. A. Monroy, and A.A. Moscona), Vol. 11, p. 61, Academic Press.Google Scholar
  2. 2).
    Adelstein, R.S. and Eisenberg, E. (1980). Regulation and kinetics of the actin-myosin-ATP interaction. Ann. Rev. Biochem. 49, 921.PubMedCrossRefGoogle Scholar
  3. 3).
    Jansen, J.K.S. and Lomo, T. (1981). Development of neuromuscular connections. Trends Neurosci., 4, 178.CrossRefGoogle Scholar
  4. 4).
    Sanes, J.R. and Hall, Z.W. (1979). Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina. J. Cell Biol., 83, 357.PubMedCrossRefGoogle Scholar
  5. 5).
    Pollard, T.D. (1981). Cytoplasmic contractile proteins. J. Cell Biol., 91, 156s.Google Scholar
  6. 6).
    Firtel, R.A. (1981). Multigene families encoding actin and tubulin. Cell, 24, 6.PubMedCrossRefGoogle Scholar
  7. 7).
    Salmons, S. and Henriksson, J. (1981). The adaptive response of skeletal muscle to increased use. Muscle & Nerve, 4, 94.CrossRefGoogle Scholar
  8. 8).
    Jolesz, F. and Sreter, F.A. (1981). Development, innervation, and activity-pattern induced changes in skeletal muscle. Ann. Rev. Physiol. 43, 531.CrossRefGoogle Scholar
  9. 9).
    Abbott, J., Schutz, J., Dienstman, S. and Holtzer, H. (1974). The phenotypic complexity of myogenic clones. Proc. Natl. Acad. Sci. USA, 71, 1506.PubMedCrossRefGoogle Scholar
  10. 10).
    Yaffé, D. (1968). Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA, 61, 477.PubMedCrossRefGoogle Scholar
  11. 11).
    Yaffé, D. and Saxel, O. (1977). A myogenic cell line with altered serum requirements for differentiation. Differentiation7, 159.PubMedCrossRefGoogle Scholar
  12. 12).
    Hauschka, S.D., Clegg, C.H., Linkart, T.A. and Lim, R.W. (1977) Mouse myogenesis: Karyotypic, morphological proliferative, and biochemical analysis of permanent clonal cell lines and their subclonal variants. J. Cell Biol., 75, 383a.Google Scholar
  13. 13).
    Jakob, H., Buckingham, M.E., Cohen, A., Dupont, L., Fiszman, M. and Jacob, F. (1978). A skeletal muscle cell line isolated from a mouse teratocarcinoma undergoes apparently normal differentiation in vitro. Exp. Cell Res., 114, 403.PubMedCrossRefGoogle Scholar
  14. 14).
    Chi, J.C.H., Rubinstein, N., Strahs, K. and Holtzer, H. (1975). Synthesis of myosin heavy and light chains in muscle cultures. J. Cell Biol., 67, 523.PubMedCrossRefGoogle Scholar
  15. 15).
    Garrels, J.I. (1979). Changes in protein synthesis during myogenesis in a clonal cell lines. Dev. Biol., 73, 134.PubMedCrossRefGoogle Scholar
  16. 16).
    Konieczny, S.F., Mckay, J. and Coleman, J.R. (1982). Isolation and characterization of terminally differentiated chicken and rat skeletal muscle myoblasts. Dev. Biol., 91, 11.PubMedCrossRefGoogle Scholar
  17. 17).
    Blau, H.M. and Epstein, C.J. (1979). Manipulation of myogenesis in vitro: Reversible inhibition by DMSO. Cell, 17, 95.PubMedCrossRefGoogle Scholar
  18. 18).
    Linkhart, T.A., Clegg, C.H. and Hauschka, S.D. (1980). Control of mouse myoblast commitment to terminal differentiation by mitogens. J. Supramolec. Struc. 14, 483.CrossRefGoogle Scholar
  19. 19).
    Emerson, C.P., Jr. and Beckner, S.K. (1975). Activation of myosin synthesis in fusing and mononucleated myoblasts. J. Mol. Biol., 93, 431.PubMedCrossRefGoogle Scholar
  20. 20).
    Fiszman, M.Y. (1982). Viral transformation and differentiation of muscle cells in culture. Biochemistry of Cellular Regulation, Vol. III (ed. M.E. Buckingham), p. 197, CRC Press.Google Scholar
  21. 21).
    Zalin, R.J. and Montague, W. (1974). Changes in adenylate cyclase, cyclic AMP and protein kinase levels in chick myoblasts, and their relationship to differentiation. Cell, 2, 103.PubMedCrossRefGoogle Scholar
  22. 22).
    Zalin, R.J. (1979). The cell cycle, myoblast differentiation and prostaglandin as a development signal. Dev. Biol., 71, 274.PubMedCrossRefGoogle Scholar
  23. 23).
    Konigsberg, I.R., Sollmann, P.A. and Mixter, L.O. (1978). The duration of the terminal Gl in fusing myoblasts. Develop. Biol. 63, 11.PubMedCrossRefGoogle Scholar
  24. 24).
    Pinset, C., Métézeau, P. and Whalen, R.G. (1982). Induction of differentiation in the myogenic cell line L6. Fifth International Congress on Neuromuscular Diseases, Sept. 12–17, 1982, Marseilles, France.Google Scholar
  25. 25).
    Taylor, K.A. and Amos, L.A. (1981). A new model for the geometry of the binding of myosin crossbridges to muscle thin filaments. J. Mol. Biol., 147, 297.PubMedCrossRefGoogle Scholar
  26. 26).
    Klee, C.B., Crouch, T.H. and Richman, P.G. (1980). Calmodulin, Ann. Rev. Biochem. 49, 489PubMedCrossRefGoogle Scholar
  27. 27).
    Vandekerckhove, J. and Weber, K. (1978). At least six different actins are expressed in a higher mammal: An analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J. Mol. Biol. 126, 783.PubMedCrossRefGoogle Scholar
  28. 28).
    Vandekerckhove, J. and Weber, K. (1979). The complete amino acid sequences from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation, 14, 123.PubMedCrossRefGoogle Scholar
  29. 29).
    Whalen, R.G., Butler-Browne, G.S. and Gros, F. (1976). Protein synthesis and actin heterogeneity in calf muscle cells in culture. Proc. Natl. Acad. Sci. USA, 73, 2018.PubMedCrossRefGoogle Scholar
  30. 30).
    Garrels, J.I. and Gibson, W. (1976). Identification and characterization of multiple forms of actin. Cell, 9, 793.PubMedCrossRefGoogle Scholar
  31. 31).
    O’farrell, P.H. (1975). High resolution two dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007.PubMedGoogle Scholar
  32. 32).
    Whalen, R.G., Butler-Browne, G.S., Sell, S. and Gros, F. (1979). Transitions in contractile protein isozymes during muscle development. Biochimie, 61, 625.PubMedCrossRefGoogle Scholar
  33. 33).
    Whalen, R.G., Sell, S.M., Butler-Browne, G.S., Schwartz, K., Bouveret, P. and Pinset-Härström, I. (1981). Three myosin heavy chain isozymes appear sequentially in rat muscle development. Nature, 292, 805.PubMedCrossRefGoogle Scholar
  34. 34).
    Whalen, R.G., Bugaisky, L.B., Butler-Browne, G.S., Pinset-Härström, I., Schwartz, K. and Sell, S.M. (1982). Characterization of myosin isoenzymes appearing during rat muscle development. Cold Spring Harbor Monograph on Molecular and Cellular Control of Muscle Development, in press.Google Scholar
  35. 35).
    Merlie, J.P., Changeux, J.-P. and Gros, F. (1978). Skeletal muscle acetylcholine receptor. Purification, characterization and turnover in muscle cell cultures. J. Biol. Chem. 253, 2882.PubMedGoogle Scholar
  36. 36).
    Paterson, B. and Strohman, R. (1972). Myosin synthesis in cultures of differentiating chick embryo skeletal muscle. Dev. Biol. 29, 113.PubMedCrossRefGoogle Scholar
  37. 37).
    Benoff, S. and Nadal-Ginard, B. (1978). Transient induction of poly(A)-short myosin heavy chain messenger RNA during terminal differentiation of L6E9 myoblasts. J. Mol. Biol. 140, 283.CrossRefGoogle Scholar
  38. 38).
    Garrels, J.I. (1979). Two dimensional gel electrophoresis and computer analysis of proteins by clonal cell lines. J. Biol. Chem. 254, 7961.PubMedGoogle Scholar
  39. 39).
    Whalen, R.G., Butler-Browne, G.S. and Gros, F. (1978). Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cells. J. Mol. Biol., 126, 415.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. G. Whalen
    • 1
  1. 1.Département de Biologie MoléculaireInstitut PasteurParisFrance

Personalised recommendations