The Reversible Modulation of the Synthesis of Matrix Components in Definitive Chondroblasts Transformed by a ts-Rous Sarcoma Virus Mutant

  • M. Pacifici
  • S. L. Adams
  • H. Holtzer
  • D. Boettiger


The differentiation program of several types of terminally-differentiated embryonic cells can be reversibly altered by transformation with RNA tumour vi ruses. For example, definitive chondroblasts isolated from chick embryo vertebral cartilage and infected with a temperature sensitive (ts)-mutant of Rous sarcoma virus (ts-RSV) lose their characteristic polygonal morphology and become bipolar in shape when maintained at the permissive temperature for transformation (36°C). Concurrently with their morphological alteration, the transformed chondroblasts lose the ability to synthesize two major intercellular matrix components, the Type IV sulphated proteoglycan and Type II collagen (1,2). These morphological and biosynthetic alterations induced by viral transformation are fully reversible; within 1–2 days following a shift to the non-permissive temperature for transformation (41°C), the infected chondroblast display the characteristic polygonal-epithelioid appearance and reinitiate the synthesis of Type IV proteoglycan and Type II collagen.


Hyaluronic Acid Core Protein Collagen Molecule Link Protein Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    PACIFICI, M., BOETTIGER, D., ROBY, K. and HOLTZER, H. (1977). Transformation of chondroblasts by Rous sarcoma virus and synthesis of the sulphated proteoglycan matrix. Cell, 11, 891.PubMedCrossRefGoogle Scholar
  2. 2).
    ADAMS, S.L., BOETTIGER, D., FOCHT, R.J., HOLTZER, H., and PACIFICI, M. (1982). Regulation of the synthesis of extracellular matrix components in chondroblasts transformed by a temperature sensitive mutant of Rous sarcoma virus. Cell, 30, 373.PubMedCrossRefGoogle Scholar
  3. 3).
    DURBAN, E.M. and BOETTIGER, D. (1981). Differential effects of transforming avian RNA tumour viruses on avian macrophages. Proc. Natl. Acad. Sci. USA, 78, 3600.PubMedCrossRefGoogle Scholar
  4. 4).
    BOETTIGER, D., ROBY, K., BRUMBAUGH, J., BIEHL, J. and HOLTZER, H. (1977). Transformation of chicken embryo retinal melano-blasts by a temperature sensitive mutant of Rous sarcoma virus. Cell, 11, 881.PubMedCrossRefGoogle Scholar
  5. 5).
    ROUSLAHTI, E., ENGVALL, E. and HAYMAN, E.G. (1981). Fibronec-tin: Current concepts of its structure and functions. Collagen and Related Res., 1, 95.Google Scholar
  6. 6).
    BORNSTEIN, P. and SAGE, H. (1980). Structurally distinct collagen types. Ann. Rev. Biochem., 49, 957.PubMedCrossRefGoogle Scholar
  7. 7).
    LEVINSON, W., BHATNAGAR, R.S. and LIU, T. (1975). Loss of ability to synthesize collagen in fibroblasts transformed by Rous sarcoma virus. J. Natl. Cancer Inst., 55, 807.PubMedGoogle Scholar
  8. 8).
    OLDEN, K. and YAMADA, K.M. (1977). Mechanism of the decrease in the major cell surface protein of chick embryo fibroblasts after transformation. Cell, 11, 957.PubMedCrossRefGoogle Scholar
  9. 9).
    ADAMS, S.L., SOBEL, M.E., HOWARD, B.H., OLDEN, K., YAMADA, K.M., PASTAN, I. and DE CROMBRUGGHE, B. (1977), Levels of translatable mRNAs for cell surface protein, collagen precursors, and two membrane proteins are altered in Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA, 74, 3399.PubMedCrossRefGoogle Scholar
  10. 10).
    ROWE, D.W., MOEN, R.C., DAVIDSON, J.M., BYERS, P.H., BORNSTEIN, P. and PALMITER, R.D. (1978). Correlation of procollagen mRNA levels in normal and transformed chick embryo fibroblasts with different rates of procollagen synthesis. Biochemistry, 17, 1581.PubMedCrossRefGoogle Scholar
  11. 11).
    ADAMS, S.L., ALWINE, J.C., DE CROMBRUGGHE, B. and PASTAN, I. (1979). Use of recombinant plasmids to characterize collagen RNAs in normal and transformed chick embryo fibroblasts. J. Biol. Chem. 254, 4935.PubMedGoogle Scholar
  12. 12).
    SandMEYER, S. and BORNSTEIN, P. (1979). Declining procollagen mRNA sequences in chick embryo fibroblasts infected with Rous sarcoma virus. J. Biol. Chem., 254, 4950.PubMedGoogle Scholar
  13. 13).
    FAGAN, J., PASTAN, I. and DE CROMBRUGGGE, B. (1980). Sequence rearrangement and duplication of double stranded fibronectin cDNA probably occurring during cDNA synthesis by AMV reverse transcriptase and E. coli DNA polymerase I. Nucl. Acids Res., 8, 3055.PubMedCrossRefGoogle Scholar
  14. 14).
    SandMEYER, S., GALLIS, B., and BORNSTEIN, P. (1981). Coordinate transcriptional regulation of Type I procollagen genes by Rous sarcoma virus. J. Biol. Chem. 256, 5022.PubMedGoogle Scholar
  15. 15).
    OKAYAMA, M., PACIFICI, M. and HOLTZER, H. (1976). Differences among sulphated proteoglycans synthesized in nonchondrogenic cells, presumptive chondroblasts, and chondroblasts. Proc. Natl. Acad. Sci. USA, 73, 3224.PubMedCrossRefGoogle Scholar
  16. 16).
    DE LUCA, S., HEINEGARD, D.K., HASCALL, V.C., KIMURA, J.H. and CAPLAN, A.I. (1977). Chemical and physical changes in proteoglycand during development of chick limb bud chondrocytes grown in vitro. J. Biol. Chem. 252, 6600.PubMedGoogle Scholar
  17. 17).
    HEINEGARD, D.K. and AXELSSON, I. (1977). Distribution of keratan sulphate in proteoglycans. J. Biol. Chem., 252, 1971.PubMedGoogle Scholar
  18. 18).
    DE LUCA, S., LOHMandER, L.S., NILSSON, B., HASCALL, V.C. and CAPLAN, A.I. (1980). Proteoglycans from chick limb bud chondrocyte cultures: Keratan sulphate and oligosaccharides which contain mannose and sialic acid. J. Biol. Chem., 255, 6077.PubMedGoogle Scholar
  19. 19).
    HASCALL, V.C. and HASCALL, G.K. (1981). Proteoglycans. In; Cell biology of extracellular matrix (ed., E.D. Hay), p. 39, Plenum Press, New York.CrossRefGoogle Scholar
  20. 20).
    LOHMandER, L.S., DE LUCA, S., NILSSON, B., HASCALL, V.C., CAPUTO, C.B., KIMURA, J.H. and HEINEGARD, D. (1980). Oligosaccharides on proteoglycans from the Swarm rat chondrosarcoma. J. Biol. Chem., 255, 6084.PubMedGoogle Scholar
  21. 21).
    LOHMandER, L.S., NILSSON, B., DE LUCA, S. and HASCALL, V.C. (1981). Structures of N- and O-linked oligosaccharides from chondrosarcoma proteoglycan. Seminars in Arthritis and Rheumatism 11 (Supplement), 12.CrossRefGoogle Scholar
  22. 22).
    HEINEGARD, D.K. and HASCAL, V.C. (1979). The effect of dansylation and acetylation on the interaction between hyaluronic acid and the hyaluronic binding region of cartilage proteoglycans. J. Biol. Chem., 254, 912.Google Scholar
  23. 23).
    LOWE, M.E., PACIFICI, M. and HOLTZER, H. (1978). Effects of phorbol-12-myristate-13-acetate on the phenotypic program of cultured chondroblasts and fibroblasts. Cancer Res., 38, 2350.PubMedGoogle Scholar
  24. 24).
    PACIFICI, M. and HOLTZER, H. (1980). 12–0-Tedradecanoylphor-bol-13-acetate-induced changes in sulphated proteoglycan synthesis in cultured chondroblasts. Cancer Res. 40, 2461.PubMedGoogle Scholar
  25. 25).
    PACIFICI, M. and MOLINARO, M. (1980). Developmental changes in glycosaminoglyeans during skeletal muscle cell differentiation in culture. Exp. Cell Res., 126, 143.PubMedCrossRefGoogle Scholar
  26. 26).
    CARLSTEDT, I., COSTER, L. and MALMSTROM, A. (1981). Isolation and characterization of dermatan sulphate and heparan sulphate proteoglycans from fibroblast cultures. Biochem. J., 197, 217.PubMedGoogle Scholar
  27. 27).
    BLOBEL, G. (1978). Mechanisms for the intracellular compartment of newly synthesized proteins. FEBS (Fed. Eur. Biochem. Soc.) Proc. Meet., 43 (A2), 99.Google Scholar
  28. 28).
    PROCKOP, D.J., KIVIRIKKO, K.J., TUDERMAN, L. and GUZMAN, N.A. (1979). The biosynthesis of collagen and its disorders. NI. Eng. J. Med., 301, 13 and 77.CrossRefGoogle Scholar
  29. 29).
    NIST, C., VON DER MARK, K., HAY, E.D., OLSEN, B.R., BORNSTEIN, P., ROSS, R. and DEHM, P. (1975). Localization of procollagen in chick corneal and tendon fibroblasts with ferritin-conjugated antibodies. J. Cell Biol. 65, 75.PubMedCrossRefGoogle Scholar
  30. 30).
    HEINEGARD, D.K. (1972). Hyaluronidase digestion and alkaline treatment of bovine tracheal cartilage proteoglycans. Isolation and characterization of different keratan sulphate proteins. Biochem. Biophys. Acta, 285, 193.PubMedCrossRefGoogle Scholar
  31. 31).
    MOSKALEWSKI, S., THYBERG, J., LOHMandER, S. and FRIBERG, U. (1975). Influence of colchicine and vinblastine on the Golgi complex and matrix deposition in chondrocyte aggregates. Exp. Cell Res., 95, 440.PubMedCrossRefGoogle Scholar
  32. 32).
    KIMURA, J.H., THONAR, E.J.-M., HASCALL, V.C., REINER, A. and POOLE, A.R. (1981). Identification of core protein, and intermediate in proteoglycan biosynthesis in cultured chondrocytes from the swarm rat chondrosarcoma. J. Biol. Chem. 256, 7890.PubMedGoogle Scholar
  33. 33).
    CHACKO, S., ABBOTT, J., HOLTZER, S. and HOLTZER, H. (1969). The loss of phenytypic traits by differentiating cells. VI. Behaviour of the progeny of a single chondrocyte. J. Exp. Med. 130, 417.PubMedCrossRefGoogle Scholar
  34. 34).
    REESE, C.A. and MAYNE, R. (1981). Minor collagen of chicken hyaline cartilage. Biochemistry, 20, 5443.PubMedCrossRefGoogle Scholar
  35. 35).
    TOWBIN, H., STAEHELIN, T. and GORDON, J. (1979). Electropho-retic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA, 76, 4350.PubMedCrossRefGoogle Scholar
  36. 36).
    BAKER, J.R. and CATERSON, B. (1979). The isolation and characterization of the link proteins from proteoglycan aggregates of bovine nasal cartilage. J. Biol. Chem., 254, 2387.PubMedGoogle Scholar
  37. 37).
    TANG, L. H., ROSENBERG, L., REINER, A., POOLE, A.R. (1979). Proteoglycans from bovine nasal cartilage. Properties of a soluble form of link protein. J. Biol. Chem., 254, 10523.PubMedGoogle Scholar
  38. 38).
    DESSAU, W., SASSE, J., TIMPL, R., JILEK, F. and VON DER MARK, K. (1978). Synthesis and extracellular deposition of fibro-nectin in chondrocyte cultures. J. Cell Biol., 79, 342.PubMedCrossRefGoogle Scholar
  39. 39).
    UPHOLT, W.B., VERTEL, B.M. and DORFMAN, A. (1979). Translation and characterization of mRNAs in differentiation of chicken cartilage. Proc. Natl Acad. Sci. USA, 76, 4847.PubMedCrossRefGoogle Scholar
  40. 40).
    CHEAH, K.S.E., GRANT, M.E. and JACKSON, D.S. (1979). Translation of Type II procollagen mRNA and hydroxylation of the cell-free product. Biochem. Biophys. Res. Commun. 91, 1025.PubMedCrossRefGoogle Scholar
  41. 41).
    PAGLIA, L.M., WIESTNER, M., DUCHENE, M., QUELLETTE, L.A., HORLEIN, D., MARTIN, G.R. and MULLER, P.K. (1981). Effects of procollagen peptides on the translation of Type II collagen mRNA and on collagen biosynthesis in chondrocytes. Biochemistry 20, 3523.PubMedCrossRefGoogle Scholar
  42. 42).
    PAWLOWSKI, P.J., BRIERLEY, G.T. and LUKENS, L.N. (1981). Changes in the Type II and Type I collagen messenger RNA population during growth of chondrocytes in 5-bromo-2-deoxy-uridine. J. Biol. Chem. 256, 7695.PubMedGoogle Scholar
  43. 43).
    YOSHIMURA, M., JIMENEZ, S.A. and KAJI, A. (1981). Effects of viral transformation on synthesis and secretion of collagen and fibronectin-like molecules by embryonic chick chondrocytes in culture. J. Biol. Chem., 256, 9111.PubMedGoogle Scholar
  44. 44).
    HOWARD, B.H., ADAMS, S.L., SOBEL, M.E., PASTAN, I. and DE CROMBRUGGHE, B. (1978). Decreased levels of collagen mRNA in Rous sarcoma virus-transformed chick embryo fibroblasts. J. Biol. Chem., 253, 5869.PubMedGoogle Scholar
  45. 45).
    FAGAN, J.B., SOBEL, M.E., YAMADA, K.M., DE CROMBRUGGHE, B. and PASTAN, I. (1981). Effects of transformation on fibro-nectin gene expression using cloned fibronectin cDNA. J. Biol. Chem., 256, 520.PubMedGoogle Scholar
  46. 46).
    HYNES, R.O. (1976). Cell surface proteins and malignant transformation. Biochim. Biophys. Acta, 458, 73.PubMedGoogle Scholar
  47. 47).
    VERTEL, B.M. and DORMAN, A. (1979). Simultaneous localization of Type II collagen and core protein of chondroitin sulphate proteoglycan in individual chondrocytes. Proc. Natl Acad. Sci. USA, 76, 1261.PubMedCrossRefGoogle Scholar
  48. 48).
    KITAMURA, K. and YAMAGATA, T. (1976). The occurrence of a new type of proteochondroitin sulphate in the developing chick embryo. FEBS Lett., 71, 337.PubMedCrossRefGoogle Scholar
  49. 49).
    DURBAN, E.M. and BOETTIGER, D. (1980). Progenitor-cell populations can be infected by RNA tumour viruses, but transformation is dependent on the expression of specific differentiated functions. Cold Spring Harbor Symposium on Quant. Biol., 44, 1249.CrossRefGoogle Scholar
  50. 50).
    GAZZOLO, L., SAMARUT, J., BOUABDELLI, M. and BLANCKET, J.P. (1980). Early precursors in the eythroid lineage are the specific target cells of avian erythroblastosis virus in vitro. Cell, 22, 683.PubMedCrossRefGoogle Scholar
  51. 51).
    ABBOTT, J. and HOLTZER, H. (1968). The loss of phenotypic traits by differentiated cells. V. The effect of 5-bromode-oxyuridine on cloned chondrocytes. Proc. Natl Acad. Sci. USA, 59, 1144.PubMedCrossRefGoogle Scholar
  52. 52).
    SCHILTZ, J.R., MAYNE, R. and HOLTZER, H. (1973). The synthesis of collagen and glycosaminoglycans by dedifferentiated chon-droblasts in culture. Differentiation, 1, 97.CrossRefGoogle Scholar
  53. 53).
    MAYNE, R., VAIL, M.S. and MILLER, E.J. (1975). Analysis of changes in collagen biosynthesis that occur when chick chondrocytes are grown in 5-bromo-2′-deoxyurdine. Proc. Natl. Acad. Sci. USA, 72, 4511.PubMedCrossRefGoogle Scholar
  54. 54).
    PACIFICI, M. and HOLTZER, H. (1977) Effects of tumour-promoting agents on chondrogenesis. Am. J. Anat., 150, 207.PubMedCrossRefGoogle Scholar
  55. 55).
    TOLSTOSHEV, P., HABER, R., TRAPNELL, B.C. and CRYSTAL, R.G. (1981). Procollagen mRNA levels, activity and collagen synthesis during the fetal development of sheep lung, tendon, and skin. J. Biol. Chem. 256, 9672.PubMedGoogle Scholar
  56. 56).
    PAGLIA, L., WILCZEK, J., DIAZ DE LEON, L., MARTIN, G.R., HORLEIN, D. and MULLER, P. (1979). Inhibition of procollagen cell-free synthesis by aminoterminal extension peptides. Biochemistry, 18, 5030.PubMedCrossRefGoogle Scholar
  57. 57).
    WIESTNER, M., KRIEG, T., HORLEIN, D., GLANVILLE, R.W., FIETZEK, P. and MULLER, P.K. (1979). Inhibiting effect of procollagen peptides on collagen biosynthesis in fibroblast cultures. J. Biol. Chem. 254, 7016.PubMedGoogle Scholar
  58. 58).
    HORLEIN, D., MCPHERSON, J., GOH, S.H. and BORNSTEIN, P. (1981). Regulation of protein synthesis: translational control by procollagen-derived fragments. Proc. Natl. Acad. Sci. USA, 78, 6163.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • M. Pacifici
    • 1
  • S. L. Adams
    • 1
  • H. Holtzer
    • 1
  • D. Boettiger
    • 1
  1. 1.Departments of Anatomy, Human Genetics and Microbiology School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations