Protein Kinases Specific for Tyrosine Residues and the Role of Tyrosine Phosphorylation of Proteins in Cell Transformation

  • J. Ghysdael


Retroviruses are the etiological agents of various types of neoplasms (sarcomas, carcinomas and leukemias) in many avian and mammalian species (reviewed in ref. 1). On the basis of their pathogenicity in laboratory animals, oncogenic retroviruses have been broadly divided into two classes. Acute viruses induce tumours 15 to 30 days after injection in a susceptible host and are able to transform adequate target cells in vitro. Chronic viruses do not induce morphological transformation in vitro and require long latency periods (months to years depending on the virus-host considered) to induce tumours. This difference in pathogenicity is the result of the presence in the RNA genome of acute retroviruses of specific nucleotide sequences encoding protein unnecessary for viral replication but required for induction and maintenance of in vitro transformation and in vivo oncogenic potential. These transformation-specific sequences are referred to as v-onc genes. Retroviruses v-onc genes show strong sequence homology to specific cellular loci (c-onc). The c-onc genes are evolutionary conserved and are expressed in normal cells, sometimes in a tissue-specific manner.


Tyrosine Phosphorylation Tyrosine Residue Protein Kinase Activity Rous Sarcoma Virus Epidermal Growth Factor Binding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    TOOZE, J. The molecular biology of tumour viruses. (1973). Cold Spring Harbor Laboratory.Google Scholar
  2. 2).
    COFFIN, J.M., VARMUS, H.E., BISHOP, J.M., ESSEX, M., HARDY, W.D., MARTIN, G.S., ROSENBERG, N.E., SCOLNICK, E.M., WEINBERG, R.A. and VOGT, P.K. (1981). Proposal for naming host-derived inserts in retrovirus genomes. J. Virology, 40, 953.PubMedGoogle Scholar
  3. 3).
    BRUGGE, J.S. and ERIKSON, R.L. (1977). Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature (London), 269, 346.CrossRefGoogle Scholar
  4. 4).
    BEEMON, K. and HUNTER, T. (1978). Characterization of Rous sarcoma virus src gene products synthesized in vitro. J. Virology, 28, 551.PubMedGoogle Scholar
  5. 5).
    PURCHIO, A.F., ERIKSON, E. and ERIKSON, R.L. (1977). Translation of 35 S and subgenomic regions of avian sarcoma virus RNA. Proc. Natl. Acad. Sci. USA, 74, 4661.PubMedCrossRefGoogle Scholar
  6. 6).
    COLLETT, M.S. and ERIKSON, R.L. (1978). Protein kinase activity associated with the avian sarcoma virus src gene product. Proc. Natl. Acad. Sci. USA, 75, 2021.PubMedCrossRefGoogle Scholar
  7. 7).
    LEVINSON, A.D., OPPERMANN, H., LEVINTOW, L., VARMUS, H.E. and BISHOP, J.M. (1978). Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell, 15, 561.PubMedCrossRefGoogle Scholar
  8. 8).
    HUNTER, T. and SEFTON, B.M. (1980). The transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA, 77, 1311.PubMedCrossRefGoogle Scholar
  9. 9).
    MANESS, P.F., ENGESER, H., GREENBERG, M.E., O’FARRELL, M., GALL, W.E. and EDELMAN, G.M. (1979). Characterization of the protein kinase activity of avian sarcoma virus src gene product. Proc. Natl. Acad. Sci. USA, 76, 5028.PubMedCrossRefGoogle Scholar
  10. 10).
    LEVINSON, A.D., OPPERMANN, H., VARMUS, H.E. and BISHOP, J.M. (1980). The purified product of the transforming gene of avian sarcoma virus phosphorylates tyrosine. J. Biol. Chem., 11973.Google Scholar
  11. 11).
    ERIKSON, R.L., COLLETT, M.S., ERIKSON, E.L. and PURCHIO, A.F. (1979). Evidence that the avian sarcoma virus transforming gene product is a cyclic AMP-independent protein kinase. Proc. Natl. Acad. Sci. USA, 76, 6260.PubMedCrossRefGoogle Scholar
  12. 12).
    GILMER, T.M. and ERIKSON, R.L. (1981). Rous sarcoma virus transforming protein, p60Src , expressed in E. coli, functions as a protein kinase. Nature (London), 294, 771.CrossRefGoogle Scholar
  13. 13).
    RUBIN, C.S. and ROSEN, O.M. (1975). Protein phosphorylation. Ann Rev. Biochem. 44, 831.PubMedCrossRefGoogle Scholar
  14. 14).
    OPPERMANN, H., LEVINSON, A.D. and VARMUS, H.E. (1981). The structure and protein kinase activity of proteins encoded by non conditional mutants and back mutants in the src gene of avian sarcoma virus. Virology, 108, 47.PubMedCrossRefGoogle Scholar
  15. 15).
    SEFTON, B.M., HUNTER, T., BEEMON, K. and ECKHART, W. (1980). Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell, 20, 807.PubMedCrossRefGoogle Scholar
  16. 16).
    HANAFUSA, T., WANG, L.H., ANDERSON, S.M., KARESS, R.E., HAYWARD, W.S. and HANAFUSA, H. (1980). Characterization of the transforming gene of Fujinami sarcoma virus. Proc. Natl. Acad. Sci. USA, 77, 3009.PubMedCrossRefGoogle Scholar
  17. 17).
    LEE, W.H., BISTER, K., PAWSON, A., ROBBINS, T., MOSCOVICI, C. and DUESBERG, P.H. (1980). Fujinami sarcoma virus: an avian RNA tumour virus with a unique transforming gene. Proc. Natl. Acad. Sci. USA, 77, 2018.PubMedCrossRefGoogle Scholar
  18. 18).
    FELDMAN, R.A., HANAFUSA, T. and HANAFUSA, H. (1980). Characterization of protein kinase activity associated with the transforming gene product of Fujinami sarcoma virus. Cell, 22, 757.PubMedCrossRefGoogle Scholar
  19. 19).
    BREITMAN, M., NEIL, J.C., MOSCOVICI, C. and VOGT, P.K. (1981). The pathogenicity and defectivenes of PRCII. Virology, 108, 1.PubMedCrossRefGoogle Scholar
  20. 20).
    NEIL, J.C., BREITMAN, M. and VOGT, P.K. (1981). Characterization of a 105 Kd gag-related phosphoprotein from cells transformed by the defective avian sarcoma virus PRCII. Virology, 108, 98.PubMedCrossRefGoogle Scholar
  21. 21).
    NEIL, J.C., GHYSDAEL, J. and VOGT, P.K. (1981). Tyrosine-specific protein kinase activity associated with p105 of avian sarcoma virus PRCIV. Virology, 109, 223.PubMedCrossRefGoogle Scholar
  22. 22).
    BREITMAN, M., HIRANO, A., WONG, T. and VOGT, P.K. (1981). Characteristics of avian sarcoma virus strain PRC IV and comparison with strain PRCIIp. Virology, 114, 451PubMedCrossRefGoogle Scholar
  23. 23).
    GHYSDAEL, J., NEIL, J.C. and VOGT, P.K. (1981). Cleavage of four avian sarcoma virus polyproteins with virion protease p15 removes gag sequences and yields large fragments that function as tyrosine phosphoacceptors in vitro. Proc. Natl. Acad. Sci. USA, 78, 5847.PubMedCrossRefGoogle Scholar
  24. 24).
    WANG, L.H., FELDMAN, R., SHIBUYA, M., HANAFUSA, H., NOTTER, M. and BALDUZZI, P.C. (1981). Genetic structure, transforming sequence, and gene product of avian sarcoma virus UR 1. J. Virol., 40, 258.PubMedGoogle Scholar
  25. 25).
    KAWAI, S., YOSHIDA, M., SEGAWA, K., SUGIYAMA, H., ISHIZAKI, R. and TOYOSHIMA, K. (1980). Characterization of Y73, a newly isolated avian sarcoma virus. Proc. Natl. Acad. Sci. USA, 77, 6199.PubMedCrossRefGoogle Scholar
  26. 26).
    GHYSDAEL, J., NEIL, J.C., WALLBANK, A.M. and VOGT, P.K. (1981). Esh avian sarcoma virus codes for a gag-linked transformation-specific protein with an associated protein kinase activity. Virology, 111, 386.PubMedCrossRefGoogle Scholar
  27. 27).
    FELDMAN, R.A., WANG, L.H., HANAFUSA, H. and BALDUZZI, P.C. (1982). Avian sarcoma virus UR-2 encodes a transforming protein which is associated with a unique protein kinase activity. J. Virol., 42, 228.PubMedGoogle Scholar
  28. 28).
    WITTE, O.N., ROSENBERG, N., PASKIND, M., SHIELDS, A. and BALTIMORE, D. (1978). Identification of an Abelson murine leukemia virus-encoded protein present in transformed fibroblasts and lymphoid cells. Proc. Natl. Acad. Sci. USA, 75, 2488.PubMedCrossRefGoogle Scholar
  29. 29).
    WITTE, O.N., DASGUPTA, A. and BALTIMORE, D. (1980). Abelson murine leukemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature (London), 283, 826.CrossRefGoogle Scholar
  30. 30).
    Van De VEN, W.J.M., REYNOLDS, F.H. and STEPHENSON, J.R. (1980). The non-structural components of polyproteins encoded by replication-defective mammalian transforming retroviruses are phosphorylated and have associated protein kinase activity. Virology, 101, 185.CrossRefGoogle Scholar
  31. 31).
    BARBACID, M., BEEMON, K. and DEVARE, S.G. (1980). Origin and functional properties of the major gene product of the Snyder-Theilen strain of feline sarcoma virus. Proc. Natl. Acad. Sci. USA, 77, 5158.PubMedCrossRefGoogle Scholar
  32. 32).
    BEEMON, K. (1981). Transforming proteins of some feline and avian sarcoma virus are related structurally and functionally. Cell, 24, 145.PubMedCrossRefGoogle Scholar
  33. 33).
    SEFTON, B.M., HUNTER, T. and RASCHKE, W.C. (1981). Evidence that the Abelson virus protein functions in vivo as a protein kinase that phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA, 78, 1552.PubMedCrossRefGoogle Scholar
  34. 34).
    PAWSON, T., GUYDEN, J., KUNG, T.H., RADKE, K., GILMORE, T. and MARTIN, G.S. (1980). A strain of Fijinami sarcoma virus is temperature sensitive in protein phosphorylation and cellular transformation. Cell, 22, 767.PubMedCrossRefGoogle Scholar
  35. 35).
    PAWSON, T., KUNG, T.H. and MARTIN, G.S. (1981). Structure and phosphorylation of the Fujinami sarcoma virus gene product. J. Virology, 40, 665.PubMedGoogle Scholar
  36. 36).
    COLLETT, M.S., ERIKSON, E. and ERIKSON, R.L. (1979). Structural analysis of the avian sarcoma virus transforming protein: sites of phosphorylation. J. Virol., 24, 770.Google Scholar
  37. 37).
    NEIL, J.C., GHYSDAEL, J., VOGT, P.K. and SMART, J.E. (1982). Structural similarities of proteins encoded by three classes of avian sarcoma viruses. Virology, 121, 274.PubMedCrossRefGoogle Scholar
  38. 38).
    NEIL, J.C., GHYSDAEL, J., VOGT, P.K. and SMART, J.E. (1981). Homologous tyrosine-phosphorylation sites in transformation-specific gene products of distinct avian sarcoma viruses. Nature (London), 291, 675.CrossRefGoogle Scholar
  39. 39).
    PATCHINSKY, T., HUNTER, T., ESCH, F.S., COOPER, J.A. and SEFTON, B.M. (1982). Analysis of the sequence of amino acids surroundings sites of tyrosine phosphorylation. Proc. Natl. Acad. Sci. USA, 79, 973.CrossRefGoogle Scholar
  40. 40).
    SHIBUYA, M., HANAFUSA, T., HANAFUSA, H. and STEPHENSON, J.R. (1980). Homology exists among the transforming sequences of avian and feline sarcoma viruses. Proc. Natl. Acad. Sci. USA, 77, 6536.PubMedCrossRefGoogle Scholar
  41. 41).
    KEMP, B.E., BYLUND, D.B., HUANG, T. and KREBS, E.G. (1975). Substrate specificity of the cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA, 72, 3448.PubMedCrossRefGoogle Scholar
  42. 42).
    KEMP, B.E., GRAVES, D.J., BENJAMINI, E. and KREBS, E.G. (1977). Role of the multiple basic residues in determining the substrate specificity of cyclic-AMP-dependent protein kinase. J. Biol. Chem., 252, 4888.PubMedGoogle Scholar
  43. 43).
    TUAZON, P.T., BINGHAM, E.W. and TRAUGH, J.A. (1979). Cyclic nucleotide independent protein kinases from rabbit reticulocytes. Eur. J. Biochem., 94, 497.PubMedCrossRefGoogle Scholar
  44. 44).
    JESSE-CHAN, K.F., HURST, M.O. and GRAVES, D.J. (1982). Phosphorylase kinase specificity. J. Biol. Chem., 257, 3655.Google Scholar
  45. 45).
    SMART, J.E., OPPERMANN, H., CZERNILOFSKY, A.P., PURCHIO, A.F., ERIKSON, R.L. and BISHOP, J.M. (1981). Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src). Proc. Natl. Acad. Sci. USA, 78, 6013.PubMedCrossRefGoogle Scholar
  46. 46).
    PIKE, L.J., GALLIS, B., CASNELLIE, J.E., BORNSTEIN, P. and KREBS, E.G. (1982). Epidermal growth factor stimulates the phosphorylation of synthetic tyrosine-containing peptides by A431 cell membranes. Proc. Natl. Acad. Sci. USA, 79, 1443.PubMedCrossRefGoogle Scholar
  47. 47).
    GHYSDAEL, J., NEIL, J.C. and VOGT, P.K. (1981). A third class of avian sarcoma viruses, defined by related transformation-specific proteins of Yamaguchi 73 and Ech sarcoma virus. Proc. Natl. Acad. Sci. USA, 78, 2611.PubMedCrossRefGoogle Scholar
  48. 48).
    COLLETT, M.S., PURCHIO, A.F. and ERIKSON, R.L. (1980). Aviansrc sarcoma virus-transforming protein, pp60 shows protein kinase activity specific for tyrosine. Nature, (London), 285, 167.CrossRefGoogle Scholar
  49. 49).
    RADKE, K. and MARTIN, G.S. (1979). Transformation by Rous sarcoma virus: effects of src gene expression on the synthesis and phosphorylation of cellular polypeptides. Proc. Natl. Acad. Sci. USA, 76, 5212.PubMedCrossRefGoogle Scholar
  50. 50).
    RADKE, K., GILMORE, T. and MARTIN, G.S. (1980). Transformation by Rous sarcoma virus: a cellular substrate for transformation-specific protein phosphorylation contains phosphotyro-sine. Cell, 21, 821.PubMedCrossRefGoogle Scholar
  51. 51).
    ERIKSON, E. and ERIKSON, R.L. (1980). Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus-transforming gene product. Cell, 21, 829.PubMedCrossRefGoogle Scholar
  52. 52).
    COOPER, J.A. and HUNTER, T. (1981). Four different classes of retroviruses induce phosphorylation of tyrosines present in similar cellular proteins. Mol. Cell Biol. 1, 394.Google Scholar
  53. 53).
    COOPER, J.A. and HUNTER, T. (1981). Changes in protein phosphorylation in Rous sarcoma virus-transformed chicken embryo cells. Mol. Cell Biol., 1, 165.Google Scholar
  54. 54).
    VORT, P.K. (1977). Genetics of RNA tumour viruses. In: Comprehensive Virology (Eds., H. Fraenkel-Conrat and R. Wagner.), 9, p. 341, Plenum Press, New York and London.Google Scholar
  55. 55).
    HANAFUSA, H. (1977). Cell transformation by RNA tumour viruses. In: Comprehensive Virology (Eds. K. Fraenkel-Conrat and R. Wagner), 10, p. 401, Plenum Press, New York aid London.Google Scholar
  56. 56).
    KAHN, P., NAKAMURA, K., SHIN, S., SMITH, R.E. and WEBER, M.J. (1982). Tumorigenicity of partial transformation mutants of Rous sarcoma virus. J. Virol., 42, 602.PubMedGoogle Scholar
  57. 57).
    EDELMAN, G.M. and YAHARA, I. (1976). Temperature-sensitive changes in surface modulaing assemblies of fibroblasts transformed by mutants of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 73, 2047.PubMedCrossRefGoogle Scholar
  58. 58).
    ASH, J.F., VOGT, P.K. and SINGER, S.J. (1976). Reversion from transformed to normal phenotype by inhibition of protein synthesis in rat kidney cells infected with a temparature senstive mutant of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 73, 3603.PubMedCrossRefGoogle Scholar
  59. 59).
    WANG, E. and GOLDBERG, A.R. (1976). Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 73, 4065.PubMedCrossRefGoogle Scholar
  60. 60).
    SEFTON, B.M., HUNTER, T., BALL, E.H. and SINGER, S.J. (1981). Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus. Cell, 24, 165.PubMedCrossRefGoogle Scholar
  61. 61).
    GEIGER, B., TOKUYASU, K.T., DUTTON, A.H. and SINGER, S.J. (1980). Vinculin, an intracellular protein localized at specialized sites where microfilaments bundles terminate at cell membrane. Proc. Natl. Acad. Sci. USA, 77, 4127.PubMedCrossRefGoogle Scholar
  62. 62).
    BURRIDGE, K. and FERAMISCO, J. (1980). Microinjection and localization of a 130 K protein in living fibroblasts: a relationship to actin and fibronectin. Cell, 19, 587.PubMedCrossRefGoogle Scholar
  63. 63).
    ROHRSCHNEIDER, L.R. (1980). Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. Proc. Natl. Acad. Sci. USA, 77, 3514.PubMedCrossRefGoogle Scholar
  64. 64).
    HYNES, R. (1982). Phosphorylation of vinculin by pp60src: what might it mean? Cell, 28, 437.PubMedCrossRefGoogle Scholar
  65. 65).
    DAVID-PFEUTY, T. and SINGER, S.J. (1980). Altered distributions of cytoskeletal proteins vinculin and α-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 77, 6687.PubMedCrossRefGoogle Scholar
  66. 66).
    SHRIVER, K. and ROHRSCHNEIDER, L. (1981). Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells. J. Cell Biol., 89, 525.PubMedCrossRefGoogle Scholar
  67. 67).
    BRUGGE, J.S. and DARROW, D. (1982). Rous sarcoma virus-induced phosphorylation of a 50,000 molecular weight cellular protein. Nature (London), 295, 250.CrossRefGoogle Scholar
  68. 68).
    OPPERMANN, H., LEVINSON, W. and BISHOP, J.M. (1981). A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc. Natl. Acad. Sci. USA, 78, 1067.PubMedCrossRefGoogle Scholar
  69. 69).
    OPPERMANN, H., LEVINSON, A.D., VARMUS, H.E., LEVINTOW, L. and BISHOP, J.M. (1979). Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Proc. Natl. Acad. Sci. USA, 76, 1804.PubMedCrossRefGoogle Scholar
  70. 70).
    WITTE, O.N., ROSENBERG, N.E. and BALTIMORE, D. (1979). A normal cell protein cross-reactive to the major Abel son murine leukemia virus gene product. Nature (London), 281, 396.CrossRefGoogle Scholar
  71. 71).
    MATHEY-PREVOT, B., HANAFUSA, H. and KAWAI, S. (1982). A cellular protein is immunologically cross reactive with and functionally homologous to the Fujinami sarcoma virus transforming protein. Cell, 28, 897.PubMedCrossRefGoogle Scholar
  72. 72).
    CARPENTER, G. and COHEN, S. (1979). Epidermal Growth Factor. Ann. Rev. Biochem., 48, 193.PubMedCrossRefGoogle Scholar
  73. 73).
    USHIRO, H. and COHEN, S. (1980). Identification of phospho-tyrosine as a product of Epidermal Growth Factor-activated protein kinase in A431-cell membranes. J. Biol. Chem., 255, 8363.PubMedGoogle Scholar
  74. 74).
    CHINKERS, M. and COHEN, S. (1981). Purified EGF receptor-kinase interacts specifically with antibodies to Rous sarcoma virus transforming protein. Nature (London), 290, 516.CrossRefGoogle Scholar
  75. 75).
    ROSS, R. and VOGEL, A. (1978). The Platelet-derived growth factor. Cell, 14, 203.PubMedCrossRefGoogle Scholar
  76. 76).
    EK, B., WESTERMARK, B., WASTESON, A. and HELDIN, C.H. (1982). Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor (PDGF). Nature (London) 295, 419.CrossRefGoogle Scholar
  77. 77).
    COHEN, S., CARPENTER, G. and KING, L. (1980). Epidermal growth factor-receptor-protein kinase interactions. J. Biol. Chem., 255, 4834.PubMedGoogle Scholar
  78. 78).
    BUHROW, S.A., COHEN, S. and STAROS, J.V. (1982). Affinity labelling of the protein kinase associated with the EGF receptor in membrane vesicles from A431 cells. J. Biol. Chem., 257, 4019.PubMedGoogle Scholar
  79. 79).
    BUSS, J.E., KUDLOW, J.E., LAZAR, C.S. and GILL, G.N. (1982). Altered epidermal growth factor (EGF)-stimulated protein kinase activity in variants A431 cells with altered growth responses to EGF. Proc. Natl. Acad. Sci. USA, 79, 2574.PubMedCrossRefGoogle Scholar
  80. 80).
    HUNTER, T. and COOPER, J.A. (1981). Epidermal Growth Factor induces rapid tyrosine phosphorylation of proteins in A431 human tumour cells. Cell, 24, 741.PubMedCrossRefGoogle Scholar
  81. 81).
    COOPER, J.A. and HUNTER, T. (1981). Similarities and differences between the effects of Epidermal Growth Factor and Rous sarcoma virus. J. Cell Biol., 91, 878.PubMedCrossRefGoogle Scholar
  82. 82).
    GILL, G.N. and LAZAR, C.S. (1981). Increased phosphotyrosine content and inhibition of proliferation in EGF-treated A431 cells. Nature (London), 293, 305.CrossRefGoogle Scholar
  83. 83).
    POIRIER, F., GALOTHY, G., KARESS, R.E., ERIKSON, E. and HANAFUSA, H. (1982). Role of p60src kinase activity in the induction of neuroretinal cell proliferation by Rous sarcoma virus. J. Virol. 42, 780.PubMedGoogle Scholar
  84. 84).
    REYNOLDS, F.H., TODARO, G., FRYLING, C. and STEPHENSON, J.R. (1981). Human transforming growth factors induce tyrosine phosphorylation of EGF receptors. Nature (London), 292, 259.CrossRefGoogle Scholar
  85. 85).
    DE LARCO, J.E. and TODARO, G.J. (1978). Growth factors from murine sarcoma-virus transformed cells. Proc. Natl. Acad. Sci. USA, 75, 4001–4005.PubMedCrossRefGoogle Scholar
  86. 86).
    TODARO, G.J., FRYLING, C. and De LARCO, J.E. (1980). Transforming growth factors produced by certain human tumour cells: polypeptides that interact with epidermal growth factor receptors. Proc. Natl. Acad. Sci. USA, 77, 5258.PubMedCrossRefGoogle Scholar
  87. 87).
    OZANNE, B., FULTON, R.J. and KAPLAN, P.L. (1980). Kirsten Murine Sarcoma Virus transformed cell lines and a spontaneously transformed rat cell line produce transforming factors. J. Cell. Physiol., 105, 163–180.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. Ghysdael
    • 1
  1. 1.Laboratoire de Chimie Biologique, Département de Biologie MoléculaireUniversité libre de BruxellesRhode St-GenèseBelgium

Personalised recommendations