Structure and Function of Plant Virus Genomes

  • Lous van Vloten-Doting
  • John F. Bol
  • Annette Nassuth
  • Jan Roosien
  • Alberto N. Sarachu
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 63)


When the presently classified viruses are grouped according to their genetic material (DNA, RNA, double-stranded, single-stranded, plus — or minus-type) we see (Table 1) that the majority of plant viruses has a genome consisting of single-stranded RNA of the plus polarity (virion RNA has the same polarity as mRNA). Within this group both the structural features (number of genome parts, structure present at the 5’ or the 3’ termini of the RNA) as well as the strategy of expression are extremely diverse (Table 2)2,3 (and references therein).


Mosaic Virus Coat Protein Tobacco Mosaic Virus Cucumber Mosaic Virus Alfalfa Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.E.F. Matthews, Classification and nomenclature of viruses Fourth report of the international committee on taxonomy of viruses, Intervirology 17: 1 (1982).CrossRefGoogle Scholar
  2. 2.
    L. van Vloten-Doting, and L. Neeleman, Translation of plant virus RNAs, in: “Encycl. Plant. Phys.” 14B, D. Boulter and B. Parthier, eds., Springer Verlag, Berlin, Heidelberg, New York, pp. 297 (1982).Google Scholar
  3. 3.
    J.W. Davies, and R. Hull Genome expression of positive strand RNA viruses, J. Gen. Virol. 61: 1 (1982).CrossRefGoogle Scholar
  4. 4.
    L. van Vloten-Doting, R.I.B. Francki, R.W. Fulton, J.M. Kaper, and L.C. Lane Tricornaviridae-a proposed family of plant viruses with tripartite, single-stranded RNA genomes, Intervirology 15: 198 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Goldbach, G. Rezelman, and A. van Kammen Independent replication and expression of B-component RNA of cowpea mosaic virus, Nature 286: 297 (1980).CrossRefGoogle Scholar
  6. 6.
    D.J. Robinson, H. Barker, B.D. Harrison, and M.A. Mayo Replication of RNA 1 of tomato black ring virus independently of RNA 2, J. Gen. Virol. 51: 317 (1980).CrossRefGoogle Scholar
  7. 7.
    P. Kiberstis, L.S. Loesch-Fries, and T.C. Hall Viral protein synthesis in barley protoplasts infected with native and fractionated brome mosaic virus RNA, Virology 112: 804 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Nassuth, F. Alblas, and J.F. Bol Localization of genetic information involved in the replication of alfalfa mosaic virus, J. Gen. Virol. 53: 207 (1981).CrossRefGoogle Scholar
  9. 9.
    L. van Vloten-Doting, J.A. Hasrat, E. Oosterwijk, P. van’ t Sant, M.A. Schoen, and J. Roosien Description and complementation analysis of 13 temperature sensitive mutants of alfalfa mosaic virus, J. Gen. Virol. 46: 415 (1980).CrossRefGoogle Scholar
  10. 10.
    J.F. Bol, B. Kraal, and F. Th. Brederode Limited proteolysis of alfalfa mosaic virus: Influence on the structural and biological function of the coat protein. Virology 58: 101 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    G. Lebeurier, A. Nicolaeiff, and K.E. Richards Inside-out model for self-assembly of tobacco mosaic virus, Proc. Natl. Acad. Sei. USA 74: 149 (1977).CrossRefGoogle Scholar
  12. 12.
    M. Abou Haidar Polar assembly of clover yellow mosaic virus, J. Gen. Virol. 57: 199 (1981).CrossRefGoogle Scholar
  13. 13.
    E.C. Koper-Zwarthoff, F. Th. Brederode, P. Walstra, and J.F. Bol Nucleotide sequence of the 3T-noncoding region of alfalfa mosaic virus RNA 4 and its homology with the genomic RNAs, Nucleic Acids Res. 7: 1887 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    L. van Vloten-Doting, and E.M.J. Jaspars, Plant covirus systems: Three-component systems, in: “Comprehensive Virology” Vol. 11, H. Fraenkel-Conrat and R.R. Wagner, eds., Plenum Press, New York, London, pp. 1 (1977).Google Scholar
  15. 15.
    C.H. Smit, J. Roosien, L. van Vloten-Doting, and E.M.J. Jaspars Evidence that alfalfa mosaic virus infection starts with three RNA-protein complexes, Virology 112: 169 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    C.J. Houwing, and E.M.J. Jaspars Coat protein binds to the 3’-terminal part of RNA 4 of alfalfa mosaic virus. Biochemistry 17: 2927 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    W.O. Dawson, and J.L. White, A temperature-sensitive mutant of tobacco mosaic virus deficient in synthesis of single-stranded RNA, Virology, 93: 104 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    W.O. Dawson, and J.L. White Characterisation of a temperature-sensitive mutant of tobacco mosaic virus deficient in synthesis of all RNA species, Virology 90: 209 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Sarkar, and P. Smitamana, A truly coat protein-free mutant of tobacco mosaic virus, Naturwissenschaften 68: 145 (1981).CrossRefGoogle Scholar
  20. 20.
    R.M. Lister Functional relationships between virus-specific products of infection by viruses of the tobacco rattle type, J. Gen. Virol. 2: 43 (1968).CrossRefGoogle Scholar
  21. 21.
    G. Rezelman, H.J. Franssen, R.W. Goldbach, T.S. Ie, and A. van Kammen Limits to the independence of bottom component RNA of cowpea mosaic virus. J. Gen. Virol. 60: 335 (1982).CrossRefGoogle Scholar
  22. 22.
    P. Zabel, M. Moerman, F. van Straaten, R. Goldbach, and A. van Kammen Antibodies against the genome-linked protein VPg of cowpea mosaic virus recognize a 60,000-dalton precursor polypeptide. J. of Virology 41: 1083 (1982).Google Scholar
  23. 23.
    J.J. Bujarski, S.F. Hardy, W.A. Miller, and T.C. Hall Use of dodecyl-ß-D-maltoside in the purification and stabilization of RNA polymerase from brome mosaic virus-infected barley. Virology 119: 465 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    W.O. Dawson Effect of temperature-sensitive, replication-defective mutations on RNA synthesis of cowpea chlorotic mottle virus. Virology 115: 130 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Nassuth, and J.F. Bol, Altered balance of the synthesis of plus-and minus-strand RNAs induced by RNA 1 and RNA 2 of alfalfa mosaic virus in the absence of RNA 3. Virology, in press.Google Scholar
  26. 26.
    J. Roosien, J., and L. van Vloten-Doting, Complementation and interference of UV induced M ts mutants of alfalfa mosaic virus. J. Gen. Virol., in press.Google Scholar
  27. 27.
    R.E.F. Matthews, “Plant Virology”, 2nd edition, Academic Press, New York, London, Toronto, Sydney, San Francisco (1981).Google Scholar
  28. 28.
    M. Nishiguchi, F. Motoyoshi, and N. Oshima Behaviour of a temperature sensitive strain of tobacco mosaic virus in tomato leaves and protoplasts, J. Gen. Virol. 39: 53 (1978).CrossRefGoogle Scholar
  29. 29.
    D.A. Leonard, and M. Zaitlin, A temperature-sensitive strain of tobacco mosaic virus defective in cell to cell movement generates an altered viral-coded protein, Virology 117: 416 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    T.A. Shalla, L.J. Petersen, and M. Zaitlin Restricted movement of a temperature-sensitive virus in tobacco leaves is associated with a reduction in numbers of plasmodesmata, J. Gen. Virol. 60: 355 (1982).CrossRefGoogle Scholar
  31. 31.
    A. Dingjan-Versteegh, L. van Vloten-Doting, and E.M.J. Jaspars Alfalfa mosaic virus hybrids constructed by exchanging nucleoprotein components, Virology 49: 716 (1972).PubMedCrossRefGoogle Scholar
  32. 32.
    A.L.N. Rao, and R.I.B. Francki Distribution of determinants for symptom production and host range on the three RNA components of cucumber mosaic virus. J. Gen. Virol. 61: 197 (1982).CrossRefGoogle Scholar
  33. 33.
    B.D. Harrison, A.F. Murant, M.A. Mayo, and J.M. Roberts Distribution of determinants for symptom production, host range and nematode transmissibility between the two RNA components of raspberry ringspot virus. J. Gen. Virol. 22: 233 (1974).CrossRefGoogle Scholar
  34. 34.
    D.W. Mossop, and R.I.B. Francki Association of RNA 3 with aphid transmission of cucumber mosaic virus. Virology 81: 177 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    D.V.R. Reddy, and L.M. Black Isolation and replication of mutant populations of wound tumor virions lacking certain genome segments, Virology 80: 336 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    L. Bos, “Symptoms of Virus Diseases in Plants”, 3rd edition, Pudoc, Wageningen (1978).Google Scholar
  37. 37.
    R.W. Fulton Inheritance and recombination of strain-specific characters in tobacco streak virus, Virology 50: 810 (1972).PubMedCrossRefGoogle Scholar
  38. 38.
    J.M. Kaper, and H.E. Waterworth Cucumber mosaic virus associated RNA 5: Causal agent for tomato necrosis, Science 196: 429 (1977).PubMedCrossRefGoogle Scholar
  39. 39.
    W.G. Dougherty, and E. Hiebert Translation of potyvirus RNA in a rabbit reticulocyte lysate: Identification of nuclear inclusion proteins as products of tobacco etch virus RNA translation and cylindrical inclusion protein as a product of the poty virus genome, Virology 104: 174 (1980).PubMedCrossRefGoogle Scholar
  40. 40.
    G.F. Sprague, and H.M. McKinney Further evidence on the genetic behavior of AR in maize, Genetics 67: 533 (1971).PubMedGoogle Scholar
  41. 41.
    K.M. Brakke, R.G. Samson, and W.A. Compton Specific Aberrant Ratio is due to recessive alleles, Genetics 99: 481 (1981).PubMedGoogle Scholar
  42. 42.
    D.R. Pring Barley stripe mosaic virus infection of corn and the “aberrant ratio” genetic effect, Phytopathology 64: 64 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Lous van Vloten-Doting
    • 1
  • John F. Bol
    • 1
  • Annette Nassuth
    • 1
  • Jan Roosien
    • 1
  • Alberto N. Sarachu
    • 1
  1. 1.Department of BiochemistryState University of LeidenLeidenThe Netherlands

Personalised recommendations