Advertisement

Transformation of Plant Protoplasts in Vitro

  • F. A. Krens
  • G. J. Wullems
  • R. A. Schilperoort
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 63)

Abstract

In genetic manipulation one can distinguish between the mixing of more or less complete genomes and the more accurate introduction of well defined genes. In the first case use is being made of somatic cell fusion and the uptake of isolated chromosomes and organelles. It might particularly contribute in the transfer of complex genetic traits, like polygenic complexes, that affect yield in agricultural production. In the second case use is being made of recombinant DNA and transformation of protoplasts. By this approach only one or a small number of genes are transferred into an otherwise unaltered genetic background, which has many advantages over less accurate procedures. It is quite clear that plant genetic manipulation is at an early stage of development and that much has still to be learned. Nevertheless, it is proven that this technology can overcome restrictions on gene flow between widely different organisms. Its use will enable us to understand e.g. genomic organization and regulation of gene expression in higher plants. Unless much more is known about this subject and the molecular processes, that underly plant phenotype in general, it can not be expected that somatic and molecular genetics will significantly contribute to applications of practical use. Here, we only deal with the transformation of plant cells, which requires a procedure for introducing DNA into cells followed by its expression. The major obstacle to DNA uptake in plant cells is the cell wall, but this can be circumvented by using plant protoplasts, i.e. cells freed of their cell walls by enzymatic digestion. Using appropriate media, protoplasts regenerate a new cell wall and subsequently divide. After sustained cell divisions small cell clumps arise.

Keywords

Agrobacterium Tumefaciens Crown Gall Plant Protoplast Tobacco Protoplast Crown Gall Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Lipetz Crown gall tumorigenesis II. Relations between wound healing and the tumorigenic response, Cancer Res. 26: 1597 (1966).PubMedGoogle Scholar
  2. 2.
    R.A. Schilperoort, Investigations on plant tumors. Crown Gall. On the biochemistry of tumor induction by Agrobacterium tumefaciens, thesis, Univ. Leiden (1969).Google Scholar
  3. 3.
    B.B. Lippincott and J.A. Lippincott Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens, J. Bacteriol. 97: 620 (1969).Google Scholar
  4. 4.
    M.H. Whatley, J.S. Bodwin, B.B. Lippincott and J.A. Lippincott Role for Agrobacterium cell envelope lipopolysaccharide in infection site attachment, Infect.Immun. 13: 1080 (1976).Google Scholar
  5. 5.
    J.A. Lippincott and B.B. Lippincott, Microbial adherence in plants, in Bacterial adherence (Receptors and Recognition, Series B, volume 6), E.H. Beachey, e.d., Chapman and Hall, Londen (1980).Google Scholar
  6. 6.
    A.C. Braun Thermal inactivation studies on the tumor-inducing principle in crown gall, Phytopathology 40: 3 (1950).Google Scholar
  7. 7.
    I.W. Deep and H. Hussin Effect of postinoculation temperature on crown gall development on cherry, Phytopathology 52: 360 (1962).Google Scholar
  8. 8.
    A.C. Braun ed., Plant tumor research, in Progress in Experimental Tumor Research, vol.15, S. Karger, Basel (1972).Google Scholar
  9. 9.
    G. Kahl and J. Schell, eds., Molecular Biology of Plant Tumors, Academic Press, New York (1982).Google Scholar
  10. 10.
    G. Bomhoff, P.M. Klapwijk, H.C. M.Kester, R.A. Schilperoort, J.P. Hernalsteens and J. Schell Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens, Mol.Gen.Genet. 145: 177 (1976).Google Scholar
  11. 11.
    A.L. Montoya, M.-D. Chilton, M.P. Gordon, D. Sciaky and E.W. Nester, Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall cells:role of plasmid genes, J. Bacteriol. 129: 101 (1977).PubMedGoogle Scholar
  12. 12.
    M.-D. Chilton, M.H. Drummond, D.J. Merlo, D. Sciaky, A.L. Montoya, M.P. Gordon and E.W. Nester, Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis, Cell 11:263 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    M.-D. Chilton, D.A. Tepfer, A. Petit, C. David, F. Casse-Delbart and J. Tempé, Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells, Nature 295:432 (1982).CrossRefGoogle Scholar
  14. 14.
    L. Willmitzer, M. De Beuckeleer, M. Lemmers, M. Van Montagu and J. Schell, DNA from Ti-plasmid present in nucleus and absent from plastids of crown gall plant cells, Nature 287:359 (1980).CrossRefGoogle Scholar
  15. 15.
    M.-D. Chilton, R.K. Saiki, N. Yadav, M.P. Gordon and F. Quetier, T-DNA from Agrobacterium Ti-plasmid is in the nuclear DNA fraction of crown gall tumor cells, Proc.Natl.Acad.Sei. USA 77:4060 (1980).CrossRefGoogle Scholar
  16. 16.
    L. Otten, H. de Greve, J.P. Hernalsteens, M. Van Montagu, O. Schieder, J. Sträub and J. Schell Mendelian transmission of genes introduced into plants by the Ti-plasmids of Agrobacterium tumefaciens, Mol.Gen.Genet. 183: 209 (1981).CrossRefGoogle Scholar
  17. 17.
    P. Zambryski, M. Holsters, K. Kruger, A. Depicker, J. Scheli, M. Van Montagu and H.M. Goodman Tumor DNA structure in plant cells transformed by A. tumefaciens, Science 209: 1385 (1980).Google Scholar
  18. 18.
    G. Ooms, P.J.J. Hooykaas, R.J.M. van Veen, P. van Beelen, T.J.G. Regensburg-Tuïnk and R.A. Schilperoort Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region, Plasmid 7: 15 (1982).Google Scholar
  19. 19.
    G. Engler, A. Depicker, R. Maenhaut, R. Villaroel, M. Van Montagu and J. Schell Physical mapping of DNA base sequences homologous between an octopine and nopaline Ti-piasmid of Agrobacterium tumefaciens, J. Mol.Biol. 152: 183 (1981).CrossRefGoogle Scholar
  20. 20.
    L. Willmitzer, G. Simons and J. Schelly The TL-DNA in octopine crowngall tumours codes for seven well-defined polyadenylated transcripts, EMBO Journal 1:139 (1982).PubMedGoogle Scholar
  21. 21.
    S.B. Gelvin, M.F. Thomashow, J.C. McPherson, M.P. Gordon and E.W. Nester Sizes and map positions of several plasmid-DNA-encoded transcripts in octopine-type crown gall tumors, Proc.Natl. Acad.Sci. USA 79: 76 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    L. Willmitzer, W. Schmalenbach and J. Schell Transcription of T-DNA in octopine and nopaline crown gall tumours is inhibited by low concentrations of a-amanitin, Nucl.Acids Res. 9: 4801 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Schröder, G. Schröder, H. Huisman, R.A. Schilperoort and J. Schelly The mRNA for lysopine dehydrogenase in plant tumor cells is complementary to a Ti-plasmid fragment, FEBS Lett. 129:156 (1981).CrossRefGoogle Scholar
  24. 24.
    G. Ooms, P.J.J. Hooykaas, G. Moolenaar and R.A. Schilperoort Crown gall plant tumours of abnormal morphology, induced by Agro-bacterium tumefaciens carrying mutated octopine Ti-plasmids; analysis of T-DNA functions, Gene 14: 33 (1981).Google Scholar
  25. 25.
    G. Ooms, L. Molendijk and R.A. Schilperoort, Double infection of tobacco plants by two complementing octopine T-region mutants of Agrobacterium tumefaciens, Plant Mol.Biol. 3 in press (1982).Google Scholar
  26. 26.
    L. Willmitzer, J. Sanchez-Serrano, E. Buschfeld and J. Schell, DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissues, Mol.Gen.Genet. 186:16 (1982).CrossRefGoogle Scholar
  27. 27.
    R. Beiderbeck Wurzelinduktion an Blättern von Kalanchoë daigremontiana durch Agrobacterium rhizogenes und der Einfluss von Kinetm auf diesen Prozess, Z. Pflanzenphysiol. 68: 460 (1973).Google Scholar
  28. 28.
    D.J. Garfinkel, R.B. Simpson, L.W. Ream, F.F. White, M.P. Gordon and E.W. Nester Genetic analysis of crown gall: Fine structure map of the T-DNA by site directed mutagenesis, Cell 27: 143 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    L. Márton, G.J. Wullems, L. Molendijk and R.A. Schilperoort, In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens, Nature 277:129 (1979).CrossRefGoogle Scholar
  30. 30.
    P.J.J. Hooykaas, P.M. Klapwijk, M.P. Nuti, R.A. Schilperoort and A. Rörsch Transfer of the Agrobacterium tumefaciens Ti-plasmid to avirulent agrobacteria and to rhizobium ex planta, J.Gen. Microbiol. 98: 477 (1977).Google Scholar
  31. 31.
    P.J.J. Hooykaas, H. den Dulk-Ras, G. Ooms and R.A. Schilperoort Interactions between octopine and nopaline plasmids in Agrobacterium tumefaciens, J.Bacteriol. 143: 1295 (1980).Google Scholar
  32. 32.
    G. Ooms, T.J.G. Regensburg-Tuink, M.H. Hofker, A.Hoekema, P.J.J. Hooykaas and R.A. Schilperoort, Studies on the structure of cointegrates between octopine and nopaline Ti-plasmids and their tumour-inducing properties, Plant Mol. Biol., in press.Google Scholar
  33. 33.
    G.Ooms, A.Bakker, L.Molendijk, G.J.Wullems, M.P.Gordon, E.W. Nester and R.A.Schilperoort, T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissues of Nicotianurn tabacum, Ceil., in press.Google Scholar
  34. 34.
    G.J. Wullems, L. Molendijk, G. Ooms and R.A. Schilperoort Retention of tumor markers in F1 progeny plants from in vitro induced octopine and nopaiine tumor tissues. Ceil. 24: 719 (1981).CrossRefGoogle Scholar
  35. 35.
    S.N. Cohen, A.Y.C. Chang and L. Hsu, Non chromosomal. antibiotic resistance in bacteria: genetic transformation of Escherichia coii by R-factor DNA, Proc. Natl. Acad. Sci. USA 69:2110 (1972).PubMedCrossRefGoogle Scholar
  36. 36.
    S. Chang and S.N. Cohen High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA, Mol.Gen.Genet. 168: 111 (1979).Google Scholar
  37. 37.
    A. Hinnen, J.B. Hicks and G.R. Fink Transformation of yeast, Proc. Natl. Acad. Sci. USA 75: 1929 (1978).PubMedCrossRefGoogle Scholar
  38. 38.
    J.D. Beggs, Transformation of yeast by a replicating hybrid plasmid, Nature 275:104 (1978).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Rassoulzadegan, B. Binetruy and F. Cuzin, High frequency of gene transfer after fusion between bacteria and eukaryotic cells, Nature 295:257 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    R.A. Schlegel and M. Rechsteiner Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells, Cell 5: 371 (1975).PubMedCrossRefGoogle Scholar
  41. 41.
    C.Y. Okada and M. Rechsteiner Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles, Cell 29: 33 (1982).PubMedCrossRefGoogle Scholar
  42. 42.
    R. Fraley and D. Papahadjopoulos, New generation liposomes: the engineering of an efficient vehicle for intracellular delivery of nucleic acids, TIBS March (1981).Google Scholar
  43. 43.
    C. Kirby, J. Clarke and G. Qregoriadis Effect of cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro, Biochem. Joum. 186: 591 (1980).Google Scholar
  44. 44.
    R. Fraley, R.M. Straubinger, G. Rule, E.L. Springer and D. Papahadjopoulos Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficiency of delivery related to lipid composition and incubation conditions, Biochemistry 20: 6978 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    R. Fraley, S. Subramani, P. Berg and D. Papahadjopoulos, Introduction of liposome-encapsulated SV40 DNA into cells, J.Biol.Chem. 255: 10431 (1980).PubMedGoogle Scholar
  46. 46.
    F.L. Graham and A.J. van der Eb, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52:456 (1973).PubMedCrossRefGoogle Scholar
  47. 47.
    M. Wigler, A. Pellicer, S. Silverstein, R. Axel, G. Urlaub and L. Chasin, DNA-mediated transfer of the adenine phosphoribosyl transferase locus into mammalian cells, Proc.Natl.Acad.Sci USA 76:1373 (1979).PubMedCrossRefGoogle Scholar
  48. 43.
    E.G. Diacumakos, Methods for micromanipulation of human somatic cells in culture, in “Methods in cell biology”, D.M. Prescott, ed., Academic, New York (1973).Google Scholar
  49. 49.
    A.E. Oleson, A.M. Janski and E.T. Clark An extracellular nuclease from suspension cultures of tobacco, Biochim.Biophys.Acta 366: 89 (1974).PubMedGoogle Scholar
  50. 50.
    A. Schaefer, K. Ohyama and O.L. Gamborg Detection by agarose gel electrophoresis of nucleases associated with cells and protoplasts from plant suspension cultures using Agrobacterium tumefaciens Ti-plasmid, Agric.Biol.Chem. 45: 1441 (1981).Google Scholar
  51. 51.
    T. Nagata, K. Okada, I. Takebe and C. Matsui Delivery of tobacco mosaic virus RNA into plant protoplasts mediated by reverse-phase evaporation vesicles (liposomes), Mol.Gen.Genet. 184: 161 (1981).Google Scholar
  52. 52.
    R.T. Fraley, S.L. Dellaporta and D. Papahadjopoulos Liposomemediated delivery of tobacco mosaic virus RNA into tobacco protoplasts: a sensitive assay for monitoring liposomeprotoplast interactions, Proc.Natl.Acad.Sci USA 79: 1859 (1982).PubMedCrossRefGoogle Scholar
  53. 53.
    A.J. Maule, M.I. Boulton, C. Edmunds and K.R. Wood Polyethylene Glycol-mediated infection of cucumber protoplasts by cucumber mosaic virus and virus RNA, J.Gen.Virol. 47: 199 (1980).CrossRefGoogle Scholar
  54. 54.
    J.-D. Rochaix and J. van Dillewijn Transformation of the green alga Chlamydomonas reinhardii with yeast DNA, Nature 296: 70 (1982).Google Scholar
  55. 55.
    S. Hasezawa, T. Nagata and K. Syono Transformation of Vinca protoplasts mediated by Agrobacterium spheroplasts, Mol.Gen.Genet. 182: 206 (1981).Google Scholar
  56. 56.
    J. Draper, M.R. Davey, J.P. Freeman, E.C. Cocking and B.J. Cox Ti-plasmid homologous sequences present in tissues from Agrobacterium plasmid-transformed Petunia protoplasts, Plant & Cell Physiol. 23: 451 (1982).Google Scholar
  57. 57.
    R.B. Simpson, P.J. O’Hara, W. Kwok, A.L. Montoya, C. Lichtenstein, M.P. Gordon and E.W. Nester, DNA from the A6S/2 crown gall tumor contains scrambled Ti-plasmid sequences near its junctions with plant DNA, Cell 29:1005 (1982).PubMedCrossRefGoogle Scholar
  58. 58.
    J. Hille, I. Klasen and R.A. Schilperoort Construction and application of R prime plasmids, carrying different segements of an octopine Ti-plasmid from Agrobacterium tumefaciens, for complementation of vir genes, Plasmid 7: 107 (1982).Google Scholar
  59. 59.
    H.J. Klee, M.P. Gordon and E.W. Nester Complementation analysis of Agrobacterium tumefaciens Ti-plasmid mutations affecting oncogenicity, J.Bacteriol. 150: 327 (1982).Google Scholar
  60. 60.
    F.A. Krens, L. Molendijk, G.J. Wullems and R.A. Schilperoort, In vitro transformation of plant protoplasts with Ti-plasmid DNA, Nature 29 72 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • F. A. Krens
    • 1
  • G. J. Wullems
    • 1
  • R. A. Schilperoort
    • 1
  1. 1.Department of BiochemistryState University of LeidenLeidenThe Netherlands

Personalised recommendations