Advertisement

Oligosaccharins: Naturally Occurring Carbohydrates with Biological Regulatory Functions

  • Peter Albersheim
  • Alan G. Darvill
  • Michael McNeil
  • Barbara S. Valent
  • Janice K. Sharp
  • Eugene A. Nothnagel
  • Keith R. Davis
  • Noboru Yamazaki
  • David J. Gollin
  • William S. York
  • William F. Dudman
  • Janet E. Darvill
  • Anne Dell
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 63)

Abstract

Complex carbohydrates have many functions but, until recently, their functions were thought to be limited to serving as structural polymers and energy reserves. It is now well established that complex carbohydrates play an important role in biological recognition. In their role as recognition agents, complex carbohydrates are: receptors for phage and bacteriocins; specific surface antigens that can determine the pathogenicity of microbes, and the mating type, the blood group type, and tissue type of eukaryotic cells; highly specific receptors in eukaryotes for viruses, bacteria, hormones, and toxins; and determinants of where glycoproteins go within cells, when they are secreted, and when they are taken up. We have now come to recognize that certain complex carbohydrates are chemical messengers, that they are, in fact, biological regulatory molecules. Results of research in our laboratory have led us to believe that these chemical messengers are especially important in regulating growth, development, reproduction, and disease resistance in plants.

Keywords

Plant Cell Wall Castor Bean Complex Carbohydrate Primary Cell Wall Acidic Polysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Albersheim and B. S. Valent. Host-pathogen interactions in plants. Plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics, J. Cell Biol. 78: 627–643 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    R. A. Dixon and C. J. Lamb, Stimulation of de novo synthesis of L-phenylalanine ammonia-lyase in relation to phytoalexin accumulation in Colletotrichum lindemuthianum elicitortreated cell suspension cultures of French bean (Phaseolus vulgaris), Biochem. Biophys. Acta 586: 453–463 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Ebel, A. R. Ayers, and P. Albersheim, Host-pathogen interactions XII. Response of suspension-cultured soybean cells to the elicitor isolated from Phytophthora megasperma var. sojae, a fungal pathogen of soybeans, Plant Physiol. 57: 775–779 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Ragg, D. N. Kuhn, and K. Hahlbrock, Coordinated regulation of 4-coumarate:CoA ligase and phenylalanine ammonia-lyase mRNAs in cultured plant cells, J. Biol. Chem. 256: 10061–10065 (1981).PubMedGoogle Scholar
  5. 5.
    J. A. Bailey and J. W. Mansfield, eds., “Phytoalexins,” Halsted Press, John Wiley and Sons, New York (1982).Google Scholar
  6. 6.
    A. Darvill, M. McNeil, P. Albersheim, and D. P. Delmer, The primary cell walls of flowering plants, in: “The Biochemistry of Plants,” N. E. Tolbert, ed., Academic Press, New York, 1:91–162 (1980).Google Scholar
  7. 7.
    M. McNeil, A. G. Darvill, and P. Albersheim, The structural polymers of the primary cell walls of dicots, in: “Progress in the Chemistry of Organic Natural Products,” W. Herz, H. Grisebach and G. W. Kirby, eds., Springer-Verlag, Vienna and New York, 37:191–249 (1979).CrossRefGoogle Scholar
  8. 8.
    M. McNeil, A. G. Darvill, and P. Albersheim, Structure of plant cell walls XII. Identification of seven differently-linked glycosyl residues attached to C-4 of the 2,4-linked L-rhamnosyl residues of rhamnogalacuronan I, Plant Physiol., in press (1982).Google Scholar
  9. 9.
    K. R. Davis, G. Lyon, A. G. Darvill, and P. Albersheim, unpublished results.Google Scholar
  10. 10.
    M. G. Hahn, A. G. Darvill, and P. Albersheim, Host-pathogen interactions XIX: The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans, Plant Physiol. 68: 1161–1169 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    C. A. Ryan, Proteinase inhibitors in plant leaves: A biochemical model for pest-induced natural plant protection, TIBS July:148-150 (1978).Google Scholar
  12. 12.
    C A. Ryan, P. Bishop, G. Pearce, A. G. Darvill, M. McNeil, and P. Albersheim, A sycamore cell polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities, Plant Physiol. 68: 616–618 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Docherty and D. F. Steiner, Post-transitional proteolysis in polypeptide hormone biosynthesis, Ann. Rev. Physiol. 44: 625–638 (1982).CrossRefGoogle Scholar
  14. 14.
    A. R. Ayers, J. Ebel, B. Valent, and P. Albersheim, Host-pathogen interactions X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae, Plant Physiol. 57: 760–765 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    M. McNeil, A. G. Darvill, P. Åman, L.-E. Franzén, and P. Albersheim, Structural analysis of complex carbohydrates using high performance liquid chromatography, gas chromatography and mass spectrometry, Meth. Enzymol. 83: 3–45 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    B. S. Valent, A. G. Darvill, M. McNeil, B. K. Robertsen, and P. Albersheim, A general and sensitive chemical method for sequencing the glycosyl residues of complex carbohydrates, Carbohydr. Res. 79: 165–192 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    E. A. Nothnagel, M. McNeil, and P. Albersheim, Host-pathogen interactions XXII: A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins, in preparation (1982).Google Scholar
  18. 18.
    S.-C. Lee and C. A. West, Polygalacturonase from Rhizopus stolonifer, an elicitor of casbene synthetase activity in castor bean (Ricinus communis L.) seedlings, Plant Physiol. 67: 633–639 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    S.-C. Lee and C. A. West, Properties of Rhizopus stolonifer polygalacturonase, an elicitor of casbene synthetase activity in castor bean (Ricinus communis L.) seedlings, Plant Physiol. 67: 640–645 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    R. J. Bruce and C. A. West, Elicitation of casbene synthetase activity in castor bean. The role of pectic fragments of the plant cell, wall in elicitation by a fungal endopolygalacturonase. Plant Physiol. 69:1181–1188 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    G. Lyon and P. Albersheim, Host-pathogen interactions XXI. Extraction of a heat-labile elicitor of phytoalexin accumulation from frozen soybean stem, Plant Physiol. 70: 406–409 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    J. A. Hargreaves, Investigations into the mechanism of mercuric chloride stimulated phytoalexin accumulation in Phaseolus vulgaris and Pisum sativum, Physiol. Plant Pathol. 15: 279–287 (1979).CrossRefGoogle Scholar
  23. 23.
    J. A. Hargreaves, A possible mechanism for the phytotoxicity of the phytoalexin phaseollin, Physiol. Plant Pathol. 16: 351–357 (1980).Google Scholar
  24. 24.
    J. A. Hargreaves and J. A. Bailey, Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged bean cells, Physiol. Plant Pathol. 13: 89–100 (1978).CrossRefGoogle Scholar
  25. 25.
    R. K. S. Wood, ed., “Active Defense Mechanisms in Plants,” Plenum Press, New York, pp. 1–19 (1982).CrossRefGoogle Scholar
  26. 26.
    P. Albersheim, T. M. Jones and P. D. English, Biochemistry of the cell wall in relation to infective processes, Ann. Rev. Phytopath. 7: 171–194 (1969).CrossRefGoogle Scholar
  27. 27.
    E. T. Reese, Degradation of polymeric carbohydrates by microbial enzymes, in: “Recent Advances in Phytochemistry,” F.Google Scholar
  28. 38.
    T. L. Graham, Recognition in Rhizobium-legume symbioses, in: “International Review of Cytology,” Academic Press, Supp. 13:127-148 (1981).Google Scholar
  29. 39.
    P.-E. Jansson, L. Kenne, B. Lindberg, H. Ljunggren, J. Lönngren, U. Rudén and S. Svensson, Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide of Rhizobium meliloti by sequential degradation. J. Amer. Chem. Soc. 99:3812–3815 (1977).CrossRefGoogle Scholar
  30. 40.
    P. Åman, L.-E. Franzén, A. G. Darvill, M. McNeil and P. Albersheim, Structural elucidation of the acidic extracellular polysaccharide secreted by Rhizobium phaseoli 127K38, Carbohydr. Res. 103: 77–100 (1982).CrossRefGoogle Scholar
  31. 31.
    R. K. S. Wood, “Physiological Plant Pathology,” Blackwell Scientific Publications, Oxford (1967).Google Scholar
  32. 32.
    A. Breiman and E. Galun, Plant protoplasts as tools in quantitative assays of phytotoxic compound from culture filtrates of Phytophthora citrophthora, Physiol. Plant Pathol. 19: 181–191 (1981).Google Scholar
  33. 33.
    W. S. Hillman, Experimental control of flowering in Lemna. I. Photoperiodism in L. pepusilla 6746, Am. J. Bot. 46:466–473, (1959).CrossRefGoogle Scholar
  34. 34.
    W. D. Bauer, K. Talmadge, K. Keegstra, and P. Albersheim, The structure of plant cell walls II. The hemicellulose of the walls of suspension-cultured sycamore cells, Plant Physiol. 51: 174–187 (1973).PubMedCrossRefGoogle Scholar
  35. 35.
    W. D. Bauer, Infection of legumes by rhizobia, in: “Annual Review of Plant Physiology,” 32:407–449 (1981).CrossRefGoogle Scholar
  36. 36.
    R. W. Carlson, in: “Ecology of Nitrogen Fixation,” Vol. II, W. J. Broughton, ed., Oxford University Press, London and New York, in press, (1982).Google Scholar
  37. 37.
    W. F. Dudman, The Role of Surface Polysaccharides in Natural Environments, in: I. Sutherland, ed., “Surface Carbohydrates of the Prokaryotic Cell,” Academic Press, London, pp. 357–414 (1977).Google Scholar
  38. 47.
    R. A. Dedonder, and W. Z. Hassid, The enzymatic synthesis of a β-1,2-0-linked glucan by an extract of Rhizobium japonicum, Biochem. Biophys. Acta, 90:239–248 (1964).PubMedCrossRefGoogle Scholar
  39. 48.
    P. A. J. Gorin, J. F. T. Spencer and D. W. S. Westlake, The structure and resistance to methylation of 1-2-β-glucans from species of Agrobacteria, Can. J. Chem. 39: 1067–1073 (1961).CrossRefGoogle Scholar
  40. 49.
    W. S. York, M. McNeil, A. G. Darvill and P. Albersheim, Hostsymbiont interactions VIII: β-2-linked glucans secreted by fast growing species of Rhizobium, J. Bacteriol. 142: 243–248 (1980).PubMedGoogle Scholar
  41. 41.
    P. Ånan, M. McNeil, L.-E. Franzén, A. G. Darvill and P. Albersheim, Host-symbiont interactions IX. Structural elucidation, using H.P.L.C.-M.S. and G.L.C.-M.S., of the acidic extracellular polysaccharide secreted by Rhizobium meliloti strain 1021, Carbohydr. Res. 95: 263–282 (1981).CrossRefGoogle Scholar
  42. 42.
    W. F. Dudraan, L.-E. Franzén, J. E. Darvill, M. McNeil, A. G. Darvill and P. Albersheim, The structure of the acidic polysaccharide secreted by Rhizobium phaseoli strain 127K36, in preparation (1982).Google Scholar
  43. 43.
    W. F. Dudman, L.-E. Franzén, M. McNeil, A.G. Darvill and P. Albersheim, Host-symbiont interactions XII. The structure of the acidic polysaccharide secreted by Rhizobium phaseoli strain 127K87, in preparation (1982).Google Scholar
  44. 44.
    L.-E. Franzén, W. F. Dudman, M. McNeil, A. G. Darvill and P. Albersheim, Host-symbiont interactions XII. The structure of the acidic polysaccharide secreted by Rhizobium phaseoli strain 127K44, in preparation (1982).Google Scholar
  45. 45.
    B. Robertsen, P. Ånan, A. G. Darvill, M. McNeil and P. Albersheim, Host-symbiont interactions V. The structure of the acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii, Plant Physiol. 67: 389–400 (1981).PubMedCrossRefGoogle Scholar
  46. 46.
    K. E. Fjellheim and B. Solheim, Personal communication, W. D. Bauer, Infection of legumes by rhizobia, in: “Annual Review of Plant Physiology,” 32:407–449 (1981).CrossRefGoogle Scholar
  47. 28.
    H. G. Basham and D. F. Bateman, Killing of plant cells by pectic enzymes: the lack of direct injurious interaction between pectic enzymes or their soluble reaction products and plant cells, Phytopathology 65: 141–153 (1975).CrossRefGoogle Scholar
  48. 29.
    M. S. Mount, D. F. Bateman, and H. G. Basham, Induction of electrolyte loss, tissue maceration, and cellular death of potato tissue by an endopolygalacturonate trans-ellminase, Phytopathology 60: 924–931 (1970).CrossRefGoogle Scholar
  49. 30.
    R. K. S. Wood, Killing of protoplasts by plant pathogens, in: “Current Topics in Plant Pathology,” Z. Király, ed., Akadémiai Kiadó, Budapest, pp. 107–115 (1977).Google Scholar
  50. 50.
    S. C. Fry, Phenolic components of the primary cell wall. Ferulolylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide, Biochem. J. 203: 493–504 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Peter Albersheim
    • 1
  • Alan G. Darvill
    • 1
  • Michael McNeil
    • 1
  • Barbara S. Valent
    • 1
  • Janice K. Sharp
    • 1
  • Eugene A. Nothnagel
    • 1
  • Keith R. Davis
    • 1
  • Noboru Yamazaki
    • 1
  • David J. Gollin
    • 1
  • William S. York
    • 1
  • William F. Dudman
    • 1
  • Janet E. Darvill
    • 1
  • Anne Dell
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of ColoradoBoulderUSA
  2. 2.Department of BiochemistryImperial College of Science and TechnologyLondonEngland

Personalised recommendations