The Heat Shock Response in Soybean Seedlings

  • Joe L. Key
  • C. Y. Lin
  • E. Ceglarz
  • F. Schöffl
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 63)


The response of a wide array of organisms to heat shock (hs) has been studied (e.g. Ritossa, 1962; Kelley and Schlesinger, 1978; McAlister and Finkelstein, 1980; Barnett et al., 1980; Guttman et al., 1980; Neidhardt and Van Bogelen, 1981; Key et al., 1981, 1982; Baszczynski et al., 1982; Scharf and Nover, 1982; Altschuler and Mascarenhas, 1982), with Drosophila serving as a model for this work (see Ashburner and Bonner, 1979). In general when the growth temperature is elevated a few degrees (± 10°) above “normal”, there is a marked decrease in most normal protein synthesis and turn on of synthesis of a new set of proteins (heat shock proteins or hsp’s). This dramatic switch in pattern of protein synthesis results from changes in both mRNA production and mRNA utilization in Drosophila (e.g. Ashburner and Bonner, 1979) and in plants (Key, et al., 1981 and Schöffl and Key, 1982). While there is no definitive information on the role or functions of the hsp’s, the available evidence generally supports the view that hsp’s afford some protection or “thermal tolerance” to the organism (e.g. Mitchell et al., 1979; Loomis and Wheeler, 1980, 1982; McAlister and Finkelstein, 1980; Key et al., 1982; Li and Werb, 1982).


Heat Shock Heat Shock Protein Heat Shock Response Thermal Tolerance Soybean Seedling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschuler, M., and Mascarenhas, J. P., 1982, Heat shock proteins and effects of heat shock in plants, Plant Mol. Biol., 1:103.CrossRefGoogle Scholar
  2. Arrigo, A., Fakan, S., and Tissières, A., 1980, Localization of the heat shock-induced proteins in Drosophila melanogaster tissue culture cells, Dev. Biol., 78:86.PubMedCrossRefGoogle Scholar
  3. Ashburner, M., and Bonner, J. J., 1979, The induction of gene activity in Drosophila by heat shock, Cell, 17:241.PubMedCrossRefGoogle Scholar
  4. Barnett, T., Altschuler, M., McDaniel, C. N., Mascarenhas, J. P., 1980, Heat shock induced proteins in plant cells, Dev. Gen., 1:331.CrossRefGoogle Scholar
  5. Baszczynski, C. L., Waiden, D. B., and Atkinson, B. G., 1982, Regulation of gene expression in corn (Zea mays L.) by heat shock, Can. J. Biochem., 60:569.PubMedCrossRefGoogle Scholar
  6. Guttman, S. D., Glover, C V.C. Allis, C. D., and Gorovsky, M. A., 1980, Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T. pyriformis, Cell, 22:299. Kelley, P., and Schlesinger, M., 1978, The effect of amino acid analogues and heat shock on gene expression in chick embryo fibroblasts, Cell, 15:1277.Google Scholar
  7. Key, J. L., Lin, C. Y., and Chen, Y. M., 1981, Heat shock proteins of higher plants, Proc. Natl. Acad. Sei., 78:3526.CrossRefGoogle Scholar
  8. Key, J. L., Lin, C. Y., Ceglarz, E., and Schöffl, F., 1982, The heat shock response in plants, in “Heat Shock: From Bacteria to Man.” M. Schlesinger, M. Ashburner and A. Tissières, eds., Cold Spring Harbor Laboratory. In press.Google Scholar
  9. Li, G. C., and Werb, Z., 1982, Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts, Proc. Natl. Acad. Sei., 79:3218. Loomis, W. F., and Wheeler, S., 1980, Heat shock response of Dictyostelium, Dev. Biol., 79:399.Google Scholar
  10. Loomis, W. F., and Wheeler, S. A., 1982, Chromatin-associated heat shock proteins of Dictyostelium, Dev. Biol., 90:412.PubMedCrossRefGoogle Scholar
  11. McAlister, L., and Finkelstein, D., 1980, Heat shock proteins and thermal resistance in yeast, Biochem. Biophys. Res. Commun., 93:819.PubMedCrossRefGoogle Scholar
  12. Mitchell, H., Möller, G., Petersen, N., and Lipps-Sarmiento, L., 1979, Specific protection from phenocopy induction by heat shock, Dev. Genet., 1:181.CrossRefGoogle Scholar
  13. Neidhardt, F. C. and Van Bogelen, R. A., 1981, Positive Regulatory Gene for Temperature-Controlled Proteins in Escherichia coli. Biochem. Biophys. Res. Commun., 100:894.PubMedCrossRefGoogle Scholar
  14. O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 250:4007.PubMedGoogle Scholar
  15. Ritossa, F., 1962, A new puffing pattern induced by heat shock and DNP in Drosophila, Experientia, 18:571.CrossRefGoogle Scholar
  16. Scharf, K.-D., and Nover, L., 1982, Heat-shock-induced alterations of ribosomal protein phosphorylation in plant cell cultures, Cell, 30:427.PubMedCrossRefGoogle Scholar
  17. Schöffl, F., and Key, J. L., 1982, An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs, J. Mol. Appl. Genet., 1:301.PubMedGoogle Scholar
  18. Velasquez, J., DiDomenico, B., and Linquist, S., 1980, Intracellular localization of heat shock proteins in Drosophila, Cell, 20:679.CrossRefGoogle Scholar
  19. Yamamori, T., and Yura, T., 1982, Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12, Proc. Natl. Acad. Sei., 79:860.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Joe L. Key
    • 1
  • C. Y. Lin
    • 1
  • E. Ceglarz
    • 1
  • F. Schöffl
    • 1
  1. 1.Botany DepartmentUniversity of GeorgiaAthensGreece

Personalised recommendations