Advertisement

A Search for Nodulin Genes of Soybean

  • D. P. S. Verma
  • F. Fuller
  • J. Lee
  • P. Künstner
  • N. Brisson
  • T. Nguyen
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 63)

Abstract

The development of root nodule organs and eventual symbiotic nitrogen fixation in a legume-Rhizobium association is the result of complex genetic interactions between the two organisms. Data accumulated over 4 decades has shown that the host plays an important role in this process. The influence of the host plant is observed at all levels: recognition and acceptance of the rhizobial strain; temporal regulation of nodule development; the number, size and gross morphology of nodules; the intracellular organization and structure of nodule cells; and finally the activity of the functional nodule (see Nutman, 1981; Verma, 1981; Verma and Long, 1982). These processes are regulated in part by a number of host genes, and several plant mutants have been isolated from various species which exhibit specific perturbations of nodule development and efficiency in fixing atmospheric nitrogen (Caldwell & West, 1977; Nutman, 1981). However, the exact number and function of these genes is not known. Using molecular and immunological techniques, we have attempted to identify some of the host genes and their products which may be involved in the development of this symbiotic state. The antibodies raised against soluble proteins of soybean root nodules, when adsorbed with uninfected (control) root proteins and reacted to the 35S-methionine labelled in vitro translation products of host polysomes, yielded a group of polypeptides which have been termed nodulins (Legocki and Verma, 1980). Some of these proteins, including nodulin-35 (Legocki and Verma, 1979), appear to be induced in parallel with leghemoglobins (Lbs) and have been implicated in the process of symbiosis (Verma, 1980).

Keywords

Host Gene EcoRI Fragment Nodule Development Strain 6lA76 NODULIN Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, S., and Verma, D.P.S., 1981, Biochem., 20:1300–1306.CrossRefGoogle Scholar
  2. Baucombe, D., and Verma, D.P. S., 1978, Nucl. Acid Res., 5:4141–4153.CrossRefGoogle Scholar
  3. Brisson, N., Pombo-Gentile, A., and Verma, D.P.S., 1982, Can. J. Biochem., 60:272–278.PubMedCrossRefGoogle Scholar
  4. Brisson, N., and Verma, D.P.S., 1982, Proc. Nat. Acad. Sei., USA, 79:4055–4059.CrossRefGoogle Scholar
  5. Brown, G., Brisson, N., Fuller, F., and Verma, D.P.S., 1982, (Manuscript submitted).Google Scholar
  6. Caldwell, B.E. and Vest, H.G., 1977, In: “A Treatise on Dinitrogen Fixation,” R.W.F. Hardy and W. S. Silver, eds., Wiley-Interscience Pub., N.Y., pp. 557–576.Google Scholar
  7. Efstratiadis, A., Posokony, J.W., Maniatis, T., Lawn, R.M., O’Connell, C., Spritz, R.A., De Riel, J.K., Forget, B. G., Weissman, S.M., Slightom, J.L., Blechl, A.E., Smithies, O., Baralle, F.E., Shoulders, C.C. and Proudfoot, N.J., 1980, Cell 21:653–668.PubMedCrossRefGoogle Scholar
  8. Hunt, L.T., Hurst-Caldrone, S., and Dayhoff, M.D., 1978, In: “Atlas of Protein Sequence and Structure 5,” Supp. 3:229-251.Google Scholar
  9. Hyldig-Nielsen, J. J., Jensen, E.O., Palndan, K., Wilborg, O., Garrett, R., Jorgensen, O.P., and Marker, K.A., 1982, Nucl. Acid. Res. 10:689–701.CrossRefGoogle Scholar
  10. Legocki, R.P., and Verma, D.P.S., 1979, Science, 205:190–193.PubMedCrossRefGoogle Scholar
  11. Legocki, R.P., and Verma, D.P.S., 1980, Cell, 20:153–163.PubMedCrossRefGoogle Scholar
  12. Libbenga, K.R. and Bogers, R. J., 1974, In: “The Biology of Nitrogen Fixation,” A. Quispel, ed., North-Holland Pub., Amsterdam, pp. 430–472.Google Scholar
  13. Nutman, P.S., 1981, In: “Current Perspectives in Nitrogen Fixation,” A.H. Gibson and W.E. Newton, eds., Aust. Acad. Sei., Canberra, pp. 194–204.Google Scholar
  14. Schon, E. A., deary, M.L., Haynes, J.R. and Lingrel, J.B., 1981, Cell, 27:354–369.CrossRefGoogle Scholar
  15. Sullivan, D., Brisson, N., Goodchild, B., Verma, D.P.S., and Thomas, D.Y., 1981, Nature, London, 289:516–518.CrossRefGoogle Scholar
  16. Verma, D.P.S., 1980, In: “Genome Organization and Expression in Plants”, C. J. Leaver, ed., Plenum Pub. Corporation, New York, pp. 439–452.CrossRefGoogle Scholar
  17. Verma, D. P. S., 1981, In: “Molecular Biology of Plant Development,” H. Smith and D. Grierson, eds., Blackwell Pub., Oxford, pp. 437–466.Google Scholar
  18. Verma, D. P.S., Haugland, R., Brisson, N., Lagocki, R., and Lacroix, L., 1981a, Biochem. Biophys. Ac ta, 653:98–107.Google Scholar
  19. Verma, D. P.S., Iegocki, R. P., and Auger, S., 1981b, In: “Current Perspectives in Nitrogen Fixation,” A.H. Gibson and W.E. Newton, eds., Aust. Ac ad. Sei., Canberra, pp. 205-208.Google Scholar
  20. Verma, D. P. S., and Long, S., 1982, Int. Review of Cytology, K. Jeon, ed., in press.Google Scholar
  21. Verma, D.P.S., Bewley, D., Auger, S., Fuller, F., Purohit, S. K. and Künstner, P., 1982, In: “Genetic Engineering: Application to Agriculture,” L.W. Owens, ed., USDA, Symposium VII, in press.Google Scholar
  22. Whittaker, R. G., Lennox, S., and Appleby, C.A., 1981, Biochem. Int., 3: 117–124.Google Scholar
  23. Wiborg, O., Hyldig-Nielson, J. J., Jensen, E. O. Paludan, K., and Marcker, K.A., 1982, Nucl. Acid Res., 10:3487–3494.CrossRefGoogle Scholar
  24. Zimmer, E. A., Matin, S.L., Beverley, S.M., Ran, Y.W., and Wilson, A.C., 1980, Proc. Nat. Acad. Sei., USA, 77:2158–2162.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • D. P. S. Verma
    • 1
  • F. Fuller
    • 1
  • J. Lee
    • 1
  • P. Künstner
    • 1
  • N. Brisson
    • 1
  • T. Nguyen
    • 1
  1. 1.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations