A Compendium of Characteristics for the Rapidly-Metabolized 32 Kd Protein of the Chloroplast Membrane

  • Marvin Edelman
  • Jonathan B. Marder
  • Autar K. Mattoo
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 63)


Our studies have concentrated on a 32 kd protein partially surface exposed at the photosynthetic membranes of the aquatic angiosperm, Spirodela oligorrhiza. This protein is encoded and translated within the chloroplast as a 33.5 kd precursor polypeptide. Processing to the 32 kd form occurs in vivo on the membrane and commences only after completion of the 33.5 kd polypeptide chain [28]. Polypeptide fragments, obtained following sequential proteolyses by several enzymes, have been aligned to give a proteolytic map of the 33.5 kd precursor protein. The short maturation fragment was found at the end of the hydrophylic portion of the molecule, which extends beyond the thylakoid membrane. In comparisons involving rapidly-labelled 32 kd polypeptides from chloroplast membranes of various angiosperms and the alga Chlamydomonas, a broad distribution and high degree of similarity was found at levels of precursor maturation, membrane orientation and primary structure [19]. On the other hand, a number of surface-exposed thylakoid polypeptides exist, at various levels of abundancy, with mobilities in SDS-polyacrylamide gels very similar to that of the rapidly-metabolized 32 kd polypeptide [1,13,16,21,23,30]. The protein we are studying is the product of the “32 kd gene” mapping in the large, unique-copy region of chloroplast DNA adjacent to one of the inverted repeats [34]. A list of distinguishing characteristics for the rapidly-metabolized 32 kd protein is given in Table I. It is hoped that this will be of some help to those faced with problems of polypeptide identification.


Thylakoid Membrane Inverted Repeat Chloroplast Membrane Chloroplast Development Photosynthetic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astier, C. and Joset-Espardellier, F. (1981) FEBS Lett. 129 47–51.CrossRefGoogle Scholar
  2. 2.
    Bedbrook, J.R., Link, G., Coen, D.M., Bogorad, L. and Rich, A. (1978) Proc. Natl. Acad. Sei. USA. 75 3060–3064.CrossRefGoogle Scholar
  3. 3.
    Bogorad, L., Jolly, S.O., Kidd, G. Link, G. and McIntosh, L. (1980) in: Genome Organization and Expression in Plants (ed. Leaver, C.J.), Plenum Press, New York pp. 291–304.CrossRefGoogle Scholar
  4. 4.
    Bottomley, W., Spencer, D. and Whitfeld, P.R. (1974) Arch. Biochem. Biophys. 164 106–117.PubMedCrossRefGoogle Scholar
  5. 5.
    Chua, N-H., and Gillham, N.W. (1977) J. Cell Biol. 74 441–452.PubMedCrossRefGoogle Scholar
  6. 6.
    Driesel, A.J., Spiers, J. and Bonhert, H.J. (1980) Biochim. Biophys. Acta 610 297–310.PubMedGoogle Scholar
  7. 7.
    Eaglesham, A.R.J. and Ellis, R.J. (1974) Biochim. Biophys. Acta 335 396–407.Google Scholar
  8. 8.
    Edelman, M., Mattoo, A.K. and Marder, J.B. (1982) in: Chloroplast Biogenesis (ed. Ellis, R.J.) Cambridge Univ. Press (in press).Google Scholar
  9. 9.
    Edelman, M. and Reisfeld, A. (1978) in: Chloroplast Development (eds. Akoyunoglou, G. and Argyroudi-Akoyunoglou, J.H.) Elsevier/North Holland, Amsterdam pp.641–652.Google Scholar
  10. 10.
    Edelman, M. and Reisfeld, A. (1980) in: Genome Organization and Expression in Plants (ed. Leaver, C.J.), Plenum Press, New York pp. 353–362.CrossRefGoogle Scholar
  11. 11.
    Ellis, R.J. (1977) Biochim. Biophys. Acta, 463 185–215.Google Scholar
  12. 12.
    Ellis, R.J. (1981) Ann. Rev. Plant Physiol. 32 111–137.CrossRefGoogle Scholar
  13. 13.
    Grebanier, A.E., Coen, D.M., Rieh, A. and Bogorad, L. (1978) J. Cell Biol. 78 734–746.PubMedCrossRefGoogle Scholar
  14. 14.
    Grebanier, A.E., Steinback, K.E. and Bogorad, L. (1979) Plant Physiol. 63 436–439.PubMedCrossRefGoogle Scholar
  15. 15.
    Green, B. (1980) Biochim. Biophys. Acta 609 107–120.PubMedGoogle Scholar
  16. 16.
    Kuwabara, T. and Murata, N. (1979) Biochim. Biophys. Acta 581 228–236.PubMedGoogle Scholar
  17. 17.
    Lescure, A-M. (1980) Plant Sei. Lett. 19 181–191.CrossRefGoogle Scholar
  18. 18.
    Link, G. (1982) Planta 154 81–86.CrossRefGoogle Scholar
  19. 19.
    Hoffman-Falk, H., Mattoo, A.K., Marder, J.B., Edelman, M. and Ellis, R.J. (1982) J. Biol. Chem. 257 4583–4587.PubMedGoogle Scholar
  20. 20.
    Malnoe, P., Rochaix, J.D., Chua, N-H. and Spahr, P.F. (1979) J. Mol. Biol. 133 417–434.PubMedCrossRefGoogle Scholar
  21. 21.
    Mattoo, A.K., Marder, J.B., Gressel, J. and Edelman, M. (1982) FEBS Lett. 140 36–40.CrossRefGoogle Scholar
  22. 22.
    Mattoo, A.K., Pick, U., Hofftnan-Falk, H and Edelman, M. (1981) Proc. Natl. Acad. Sei. USA. 78 1572–1576.CrossRefGoogle Scholar
  23. 23.
    Metz, J. and Bishop, N.I. (1980) Biochera. Biophys. Res. Commun.) 94 560–566.CrossRefGoogle Scholar
  24. 24.
    Morgenthaler, J.J. and Mendiola-Morgenthaler, L. (1976) Arch. Biochem. Biophy. 172 51–58.CrossRefGoogle Scholar
  25. 25.
    Pfister, K. Steinback, K.E., Gardner, G. and Aritzen, C.J. (1981) Proc. Natl. Acad. Sei. USA. 78 981–985.CrossRefGoogle Scholar
  26. 26.
    Reisfeld, A., Gressel, J., Jakob, K.M. and Edelman, M. (1978) Photochem. Photobiol. 27 161–165.CrossRefGoogle Scholar
  27. 27.
    Reisfeld, A., Jacob, K.M. and Edelman, M. (1978) in: Chloroplast Development (eds. Akoyunoglou, G. and Argyroudi-Akoyunoglou, J.H.) Elsevier/North Holland, Amsterdam pp.669–674.Google Scholar
  28. 28.
    Reisfeld, A., Mattoo, A.K. and Edelman, M. (1982) Eur. J. Biochem. 124 125–129.PubMedCrossRefGoogle Scholar
  29. 29.
    Rosner, A., Reisfeld, A., Jakob, K.M., Gressel, J. and Edelman, M. (1977) in: Acides Nucleiques et Synthese des Proteines chez les Vegetaux (eds. Bogorad, L. and Weil, J.H.) pp. 305–311. C.N.R.S., Paris.Google Scholar
  30. 30.
    Shochat, S., Owens, G.C., Hubert, P. and Ohad, I. (1982) Biochim. Biophys. Acta (in press).Google Scholar
  31. 31.
    Siddell, S.G. and Ellis, R.J. (1975) Biochem. J. 146 675–685.PubMedGoogle Scholar
  32. 32.
    Silverthorne, J. and Ellis, R.J. (1980) Biochim. Biophys. Acta 607 319–330.PubMedGoogle Scholar
  33. 33.
    Steinback, K.E., McIntosh, L., Bogorad, L. and Arntzen, C.J. (1981) Proc. Natl. Acad. Sei. USA. 78 7463–7467.CrossRefGoogle Scholar
  34. 34.
    Van Ee, J.H. (1981) Ph.D Thesis (Univ. Amsteraam), Amsterdam, Holland.Google Scholar
  35. 35.
    Vasconcelos, A.C. (1976) Plant Physiol. 58, 719–721.PubMedCrossRefGoogle Scholar
  36. 36.
    Weinbaum, S.A., Gressel, J., Reisfeld, A. and Edelman, M. (1979) Plant Physiol. 64 828–832.PubMedCrossRefGoogle Scholar
  37. 37.
    Wollgiehn, R., Lerbs, S. and Munsche, D. (1978) Biochem. Physiol. Pflanz. 173 60–69.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Marvin Edelman
    • 1
  • Jonathan B. Marder
    • 1
  • Autar K. Mattoo
    • 1
    • 2
  1. 1.Dept. of Plant GeneticsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Plant Hormone LaboratoryUSDA-ARC, BARC-WBeltsvilleUSA

Personalised recommendations