Advertisement

Comparative Studies on tRNAs and Aminoacyl-tRNA Synthetases from Various Photosynthetic Organisms

  • J. H. Weil
  • M. Mubumbila
  • M. Kuntz
  • M. Keller
  • E. J. Crouse
  • G. Burkard
  • P. Guillemaut
  • R. Selden
  • L. McIntosh
  • L. Bogorad
  • W. Löffelhardt
  • H. Mucke
  • H. J. Bohnert
  • A. Dietrich
  • G. Souciet
  • B. Colas
  • P. Imbault
  • V. Sarantoglou
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 63)

Abstract

Chloroplasts have their own protein synthesizing system, using chloroplast-specific tRNAs which are different from their cytoplasmic counterparts and are coded for by chloroplast DNA (Weil, 1979; Weil and Parthier, 1982). Total chloroplast tRNA can be fractionated by two-dimensional polyacrylamide gel electrophoresis (Burkard et al., 1982) into individual tRNAs, which can be recovered from the gel, identified by aminoacylation and labeled with 32P at their 3′ end using α-32P-ATP and tRNA nucleotidyl transferase (Mubumbila et al., 1980). Each labeled tRNA can then be hybridized to DNA fragments which have been generated by the action of a restriction endonuclease on chloroplast DNA, fractionated by agarose gel electrophoresis, and transferred to nitrocellulose strips. As the position of these fragments on the circular map of the chloroplast chromosome has been previously determined, this approach allows the localization of the tRNA genes. Such a tRNA gene map was first established in the case of the spinach chloroplast genome (Driesel et al., 1979), which is a circular molecule containing two inverted repeats; each of these inverted repeats contains a set of ribosomal RNA genes, and the spacer located between the 16S and the 23S rRNA gene was shown to contain a tRNAIle gene (Bohnert et al., 1979). Such tRNA gene mapping studies have now been extended to the chloroplast genomes of other photosynthetic organisms.

Keywords

Chloroplast Genome tRNA Gene Euglena Gracilis Large Single Copy rDNA Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohnert HJ, Driesel AJ, Crouse EJ, Gordon K, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH (1979). Presence of a transfer RNA gene in the spacer sequence between the 16S and 23S rRNA genes of spinach chloroplast DNA. FEBS Lett 103: 191.CrossRefGoogle Scholar
  2. Burkard G, Steinmetz A, Keller M, Mubumbila M, Crouse EJ, Weil JH (1982). Resolution of chloroplast tRNAs by two-dimensional gel electrophoresis. In Edelman M, Hallick RB, Chua NH (eds): “Methods in Chloroplast Molecular Biology”, Amsterdam, Elsevier, in press.Google Scholar
  3. Colas B, Imbault P, Sarantoglou V, Boulanger Y, Weil JH (1982a) chloroplastic and cytoplasmic valyl-and leucyl-tRNA synthetases from Euglena gracilis. Comparative studies of their structural properties. Biochim Biophys Acta 697:71.PubMedGoogle Scholar
  4. Colas B, Imbault P, Sarantoglou V, Weil JH (1982b). Immunological evidence for structural differences between Euglena gracilis chloroplastic valyl-and leucyl-tRNA synthetases and their cytoplasmic counterparts. FEBS Lett 141:213.PubMedCrossRefGoogle Scholar
  5. Driesel AJ, Crouse EJ, Gordon K, Bohnert HJ, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH (1979). Fractionation and identification of the individual spinach chloroplast transfer RNAs and mapping of their genes on the restriction endonuclease cleavage site map of chloropiast DNA. Gene 6: 285.PubMedCrossRefGoogle Scholar
  6. El Gewely MR, Lomax MI, Lau ET, Helling RB, Farmerie W, Barnett WE (1981). A map of specific cleavage sites and tRNA genes in the chloroplast genome of Euglena gracilis bacillaris. Mol Gen Genet 181: 296.CrossRefGoogle Scholar
  7. Graf L, Kössel H, Stutz E (1980). Sequencing of 16S–23S spacer in a ribosomal RNA operon of Euglena gracilis chloroplast DNA reveals two tRNA genes. Nature 286: 908.PubMedCrossRefGoogle Scholar
  8. Gray PW, Hallick RB (1978). Physical mapping of the Euglena gracilis chloroplast DNA and ribosomal RNA gene region. Biochemistry 17: 284.PubMedCrossRefGoogle Scholar
  9. Guillemaut P, Steinmetz A, Burkard G, Weil JH (1975). Aminoacylation of tRNALeu species from E.coli and from the cytoplasm, chloroplasts and mitochondria of Phaseolus vulgaris by homologous and heterologous enzymes. Biochim Biophys Acta 378: 64.PubMedGoogle Scholar
  10. Guillemaut P, Weil JH (1982). The nucleotide sequence of the maize and spinach chloroplast isoleucine transfer RNA encoded in the 16S to 23S rDNA spacer. Nucl Acids Res 10: 1653.PubMedCrossRefGoogle Scholar
  11. Hallick RB, Gray PW, Chelm BK, Rushlow KE, Orozco EM (1978). Euglena gracilis chloroplast DNA structure, gene mapping and RNA transcription. In Akoyunoglou G, Argyroudi-Akoyunoglou JH (eds): “Chloroplast Development”, Amsterdam, Elsevier, p 619.Google Scholar
  12. Imbault P, Sarantoglou V, Weil JH (1979). Purification of the chloropla&tic valyl-tRNA synthetase from Euglena gracilis. Biochem Biophys Res Commum 88:75.CrossRefGoogle Scholar
  13. Imbault P, Colas B, Sarantoglou V, Boulanger Y, Weil JH (1981). Chloroplast leucyl-tRNA synthetase from Euglena gracilis. Purification, kinetic analysis and structural characterization Biochemistry 20:5855.PubMedCrossRefGoogle Scholar
  14. Imbault P, Sarantoglou V, Weil JH (1982). Properties of purified chloroplastic and cytoplasmic valyl-and leucyl-tRNA synthetases from Euglena gracilis. Phytochemistry 21:1189.CrossRefGoogle Scholar
  15. Jenni B, Stutz E (1978). Physical mapping of the ribosomal DNA region of Euglena gracilis chloroplast DNA. Eur J Biochem 88: 127.PubMedCrossRefGoogle Scholar
  16. Keller M, Burkard G, Bohnert HJ, Mubumbila M, Gordon K, Steinmetz A, Heiser D, Crouse EJ, Weil JH (1980). Transfer RNA genes associated with the 16S and 23S rRNA genes of Euglena chloroplast DNA. Biochem Biophys Res Commun 95: 47.PubMedCrossRefGoogle Scholar
  17. Knapp G, Ogden RC, Peebles CL, Abelson J (1979). Splicing og yeast tRNA precursors: Structure of the reaction intermediates. Cell 18: 37.PubMedCrossRefGoogle Scholar
  18. Koch W, Edwards K, Kössel H (1981). Sequencing of the 16S–23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two splits tRNA genes. Cell 25: 203.PubMedCrossRefGoogle Scholar
  19. Loughney K, Lund E, Dahlberg JE (1982). tRNA genes are found between the 16S and 23S rRNA genes in Bacillus subtilis. Nucl Acids Res 10:1607.PubMedCrossRefGoogle Scholar
  20. Malnoe P, Rochaix JD (1978). Localization of 4S RNA genes on chloroplast genome of Chlamydomonas reinhardi. Mol Gen Genet 166:269.PubMedGoogle Scholar
  21. Morgan EA, Ikemura T, Nomura M (1977). Identification of spacer tRNA genes in individual ribosomal RNA transcription units of E.coli. Proc Natl Acad Sei US 74:2710.CrossRefGoogle Scholar
  22. Mubumbila M, Burkard G, Keller M, Steinmetz A, Crouse EJ, Weil JH (1980). Hybridization of bean, spinach, maize and Euglena transfer RNAs with homologous and heterologous chloroplasts DNAs. Biochim Biophys Acta 609: 31.PubMedGoogle Scholar
  23. Orozco EM, Rushlow KE, Dodd JR, Hallick RB (1980). Euglena gracilis chloroplast ribosomal RNA transcription units. II. Nucleotide sequence homology between 16S–23S ribosomal RNA spacer and the 16S ribosomal RNA leader regions. J Biol Chem 255: 10997.PubMedGoogle Scholar
  24. Rawson JR, Kushner SR, Vapnek D, ALton NK, Boerma CL (1978). Chloroplast ribosomal RNA genes in Euglena gracilis exists as three clustered tandem repeats. Gene 3: 191.CrossRefGoogle Scholar
  25. Sarantoglou V, Imbault P, Weil JH (1980). The use of affinity elution from blue dextran Sepharose by yeast tRNAY2 Val in the complete purification of the cytoplasmic valyl-tRNA synthetase from Euglena gracilis. Biochem Biophys Res Commun 93;134.Google Scholar
  26. Sarantoglou V, Imbault P, Weil JH (1981). Purification of Euglena gracilis cytoplasmic leucyl-tRNA synthetase. Plant Sei Lett. 22: 291.CrossRefGoogle Scholar
  27. Souciet G, Dietrich A, Colas B, Razafimahatratra P, Weil JH (1982). Purification and properties of chloroplast leucyl-tRNA synthetase from a higher plant: Phaseolus vulgaris J Biol Chem, in press.Google Scholar
  28. Steinmetz A, Gubbins EJ, Bogorad L, (1982). Nucleic Acids Res 10, 3027–3037.PubMedCrossRefGoogle Scholar
  29. Weil JH (1979). Cytoplasmic and organellar tRNAs in plants. In Hall TC, Davies J (eds): “Nucleic Acids in Plants”, West Palm Beach, CRC Press, p 143.Google Scholar
  30. Weil JH, Guillemaut P, Burkard G, Canaday J, Mubumbila M, Osorio ML, Keller M, Gloeckler R, Steinmetz A, Keith G, Heiser D, Crouse EJ (1981). Comparative studies on chloroplast transfer RNAs: tRNA sequences and tRNA gene localization in the rDNA units. In Akoyunoglou G (ed): “Photosynthesis”, Philadelphia, Balabian International Science, vol V, p 777.Google Scholar
  31. Weil JH, Parthier B (1982). Transfer RNAs and aminoacyl-tRNA synthetases in plants. In Boulter D, Parthier B (eds): “Encyclopedia of Plant Physiology, New Series”, Heidelberg, Springer Verlag, vol 17, p 65.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • J. H. Weil
    • 1
  • M. Mubumbila
    • 1
  • M. Kuntz
    • 1
  • M. Keller
    • 1
  • E. J. Crouse
    • 1
  • G. Burkard
    • 1
  • P. Guillemaut
    • 1
  • R. Selden
    • 1
  • L. McIntosh
    • 2
  • L. Bogorad
    • 2
  • W. Löffelhardt
    • 3
  • H. Mucke
    • 3
  • H. J. Bohnert
    • 4
  • A. Dietrich
    • 1
  • G. Souciet
    • 1
  • B. Colas
    • 1
  • P. Imbault
    • 1
  • V. Sarantoglou
    • 1
  1. 1.IBMCStrasbourgFrance
  2. 2.Harvard UniversityCambridgeUSA
  3. 3.Institut für BiochemieWienAustria
  4. 4.EMBLHeidelbergGermany

Personalised recommendations