Advertisement

Phaseolin: Nucleotide Sequence Explains Molecular Weight and Charge Heterogeneity of a Small Multigene Family and also Assists Vector Construction for Gene Expression in Alien Tissue

  • T. C. Hall
  • J. L. Slightom
  • D. R. Ersland
  • M. G. Murray
  • L. M. Hoffman
  • M. J. Adang
  • J. W. S. Brown
  • Y. Ma
  • J. A. Matthews
  • J. H. Cramer
  • R. F. Barker
  • D. W. Sutton
  • J. D. Kemp
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 63)

Abstract

It is now well established that the seed storage proteins of major crop species are encoded as families of closely related genes. Similarities and divergencies are being defined at the levels of protein structure, amino acid sequence, and nucleotide sequence, (see Brown, Ersland, and Hall, 1982, and Ersland et al., 1983 for reviews). Phaseolin, the major storage protein of the French bean (Phaseolus vulgaris L.) can be separated into a group of about ten closely related polypeptides by two-dimensional PAGE. Analysis of some 150 cultivars yielded only three different patterns, characterized as T (Tendergreen), S (Sanilac) and C (Contender) types (Brown et al., 1981a). The component polypeptides range in apparent molecular weight from 45 to 51 kd, and in isoelectric point from pH 5.6–5.8 (Fig. 1). The T, S and C patterns contained 5, 8 and 8 polypeptides respectively.

Keywords

Storage Protein Seed Storage Protein French Bean Derive Amino Acid Sequence Major Storage Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broach, J. R., Li, Y. Y., Feldman, J., Abraham, J., Nasmyth, K., and Hicks, J. B., 1982, Localization and sequence analysis of yeast origins of DNA. replication, Cold Spring Harbor Symp. Quant. Biol: 47. In press.Google Scholar
  2. Brown, J. W. S., Ma, Y., Bliss, F. A., and Hall, T. C., 1981a, Genetic variation in the subunits of globulin-1 storage protein of French bean, Theor. Appl. Genet., 59:83.Google Scholar
  3. Brown, J. W. S., Bliss, F. A., and Hall, T. C., 1981b, Linkage relationship between genes controlling seed proteins in French bean, Theor. Appl. Genet., 60:251.CrossRefGoogle Scholar
  4. Brown, J. W. S., Ersland, D. R., and Hall, T. C., 1982, Molecular aspects of storage protein synthesis during seed development, in: “The Physiology and Biochemistry of Seed Development, dormancy and Germination”, A. A. Khan, ed., Elsevier Biomedical Press, Amsterdam. In press.Google Scholar
  5. Chilton, M. D., Drummond, M. H., Merlo, D. J., Sciaky, D., 1978, Highly conserved DNA of Ti plasmids overlaps T-DNA maintained in plant tumours, Nature, 275:147.CrossRefGoogle Scholar
  6. Ditta, G., Stanfield, S., Corbin, D. and Helinski, D. R., 1980, Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti, Proc. Natl. Acad. Sei. USA 77:7347.CrossRefGoogle Scholar
  7. Efstradiatis, A., Posakony, J. W., Maniatis, T., Lawn, R. M., O’Connell, C., Spritz, R. A., DeRiel, J. K., Forget, B. G., Weissman, S. M., Slightom, J. L., Blechl, A. E., Smithies, O., Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J., 1980, The structure and evolution of the human ß-globin gene family, Cell, 21:653.CrossRefGoogle Scholar
  8. Ersland, D. R., Brown, J. W. S., Casey, R., and Hall, T. C., 1983, The storage proteins of Phaseolus vutgaris L., Vicia Faba L., and Pisum sativum L., in: “The Genetics and Biochemistry of Seed Proteins”, W. Gottschalk and H. P. Müller, eds., Martinus Nijhoff, The Hague. In press.Google Scholar
  9. Geraghty, D., Peifer, M. A., Rubenstein, I., and Messing, J., 1981, The primary structure of a plant storage protein: zein. Nucl. Acids Res. 9:5163.Google Scholar
  10. Gurdon, J. B., and Melton, D. A., 1981, Gene transfer in amphibian eggs and oocytes, Ann. Rev. Genet., 15:189.PubMedCrossRefGoogle Scholar
  11. Hall, T. C., Ma, Y., Buchbinder, B. V., Pyne, J. W., Sun, S. M., and Bliss, F. A., 1978, Messenger RNA for Gl protein of French bean seeds: Cell-free translation and product characterization, Proc. Natl. Acad. Sei. USA, 75:3196.CrossRefGoogle Scholar
  12. Hall, T. C., Sun, S. M., Buchbinder, B. V., Pyne, J. W., Bliss, F. A., and Kemp, J. D., 1980, Bean seed globulin mRNA: Translation, characterization and its use as a probe towards genetic engineering of crop plants, in: “Genome Organization and Expression in Plants”, C. J. Leaver, ed., Plenum Publishing Corp., New York. p. 259.CrossRefGoogle Scholar
  13. Hartley, J. L., Chen, K. K., and Donelson, J. E., 1982, A mercurythiol affinity system for rapid generation of overlapping labeled DNA fragments for DNA sequencing, Nucl. Acids Res. 10: 4009.PubMedCrossRefGoogle Scholar
  14. Kam, J., Brenner, S., Barnett, L., and Cesarini, G., 1980, Novel bacteriophage λ cloning vector, Proc. Natl. Acad. Sei. USA, 77:5172.CrossRefGoogle Scholar
  15. Kemp, J. D., Sutton, D. W., Fink, C., Barker, R. F., and Hall, T. C., 1982, Agrobacterium-mediated transfer of foreign genes into plants, Beltsville Symposium VII, “Genetic Engineering: Applications to Agriculture”.Google Scholar
  16. Ma, Y., Bliss, F. A., and Hall, T. C., 1980, Peptide mapping reveals considerable sequence homology among the three polypeptide subunits of G1 storage protein from French bean seed, Plant Physiol., 66:897.PubMedCrossRefGoogle Scholar
  17. Matthews, J. A., Brown, J. W. S., and Hall, T. C., 1981, Phaseolin mRNA is translated to yield glycosylated polypeptides in Xenopus oocytes, Nature, 294:175.PubMedCrossRefGoogle Scholar
  18. McKnight, S. L., and Gavis, E. R., 1980, Expression of the herpes thymidine kinase gene in Xenopue laevis oocytes: An assay for the study of deletion mutants constructed in vitro, Nucl. Acids Res., 8:5931.PubMedCrossRefGoogle Scholar
  19. Moreira, M. A., Hermodson, M. A., Larkins, B. A., and Nielsen, N. C., 1981, Comparison of the primary structure of the acidic polypeptides of glycinin, Arch. Biochem. Biophys., 210:633.PubMedCrossRefGoogle Scholar
  20. Murai, N., and Kemp, J. D., 1982a, T-DNA of pTi-15955 from Agrobacterium tumefaciens is transcribed into a minimum of seven polyadenylated RNAs in a sunflower crown gall tumor, Nucl. Acids Res., 10:1679.PubMedCrossRefGoogle Scholar
  21. Murai, N., and Kemp, J. D., 1982b, Octopine synthase mRNA isolated from sunflower crown gall callus is homologous to the Ti plasmid of Agrobacterium tumefaeiens, Proc. Natl. Acad. Sei. USA, 79:86.CrossRefGoogle Scholar
  22. Pedersen, K., Devereux, J., Wilson, D. R., Sheldon, E., and Larkins, B. A., 1982, Cloning and sequence analysis reveal structural variation among related zein genes in maize, Cell, 29:1015.PubMedCrossRefGoogle Scholar
  23. Romero, J., Sun, S. M., McLeester, R. C., Bliss, F. A., and Hall, T. C., 1975, Heritable varition in a polypeptide subunit of the major storage protein of the bean (Phaseolus vulgaris L.), Plant Physiol., 56:776.PubMedCrossRefGoogle Scholar
  24. Ruvkun, G. B., and Ausubel, F. M., 1981, A general method for site-directed mutagenesis in prokaryotes, Nature, 289:85.PubMedCrossRefGoogle Scholar
  25. Sharon, N., and Lis, H., 1979, Comparative biochemistry of plant glycoproteins, Biochem. Soc. Trans., 7:783.PubMedGoogle Scholar
  26. Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol., 98:503.PubMedCrossRefGoogle Scholar
  27. Struhl, K., Stinchcomb, D. T., Scherer, S., and Davis, R. W., 1979, High frequency transformation of yeast: Autonomous replication of hybrid DNA molecules, Proc. Natl. Acad. Sei. USA, 76:1035.CrossRefGoogle Scholar
  28. Sun, S. M., 1974, Ph.D. Thesis, University of Wisconsin.Google Scholar
  29. Sun, S. M., Slightom, J. L., and Hall, T. C., 1981, Intervening sequences in a plant gene: comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin, Nature 289:37.CrossRefGoogle Scholar
  30. Wullems, G. J., Lucy, M., Ooms, G., and Schilperoort, R. A., 1981, Retention of tumor markers in F1 progeny plants from in vitro-induced octopine and nopaline tumor tissues, Cell, 24:719.PubMedCrossRefGoogle Scholar
  31. Yadav, N. S., Postle, K., Saiki, R. K., Thomashow, M. F., and Chilton, M. D., 1980, T-DNA of a crown gall teratoma is covalently joined to host plant DNA, Nature, 287:458.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • T. C. Hall
    • 1
  • J. L. Slightom
    • 1
  • D. R. Ersland
    • 1
  • M. G. Murray
    • 1
  • L. M. Hoffman
    • 1
  • M. J. Adang
    • 1
  • J. W. S. Brown
    • 1
  • Y. Ma
    • 1
  • J. A. Matthews
    • 1
  • J. H. Cramer
    • 1
  • R. F. Barker
    • 1
  • D. W. Sutton
    • 1
  • J. D. Kemp
    • 1
  1. 1.Agrigenetics Advanced Research LaboratoryMadisonUSA

Personalised recommendations