Repeated Sequences and Genome Architecture

  • R. B. Flavell
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 63)


The nuclear genome can be defined as the complement of all the DNA sequences found in the chromosomes. How the sequences are arranged with respect to one another, and how they are organised into chromosomes determines the architecture of the genome. In this paper I wish to summarise some general features of plant genome architecture and its evolution, putting special emphasis on the role played by repeated nucleotide sequences.


Wheat Genome Nucleolus Organiser Tandem Array Genome Architecture Triticum Monococcum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appels, R., Dennis, E. S., Smyth, D. R., and Peacock, W. J., 1981, Two repeated DNA sequences from the heterochromatic regions of rye (Secale cereale) chromosomes, Chromosoma (Berl.) 84:265–277.CrossRefGoogle Scholar
  2. Baltimore, D., 1981 Gene conversion: some implications for immunoglobulin genes, Cell 24: 592–594.PubMedCrossRefGoogle Scholar
  3. Bedbrook, J. R., Jones, J., O’Dell, M., Thompson, R. D. and Flavell, R. B., 1980a Molecular characterisation of telomeric heterochromatin in Secale species, Cell 19: 545–560.PubMedCrossRefGoogle Scholar
  4. Bedbrook, J. R., O’Dell, M. and Flavell, R. B., 1980b Amplification of rearranged sequences in cereal plants, Nature 288: 133–137.CrossRefGoogle Scholar
  5. Bennett, M. D., 1972 Nuclear DNA content and minimum generation time in herbaceous plants, Proc. R. Soc. Lond. B 181: 109–135.PubMedCrossRefGoogle Scholar
  6. Bennett, M. D., 1982, Nucleotypic basis of the spatial ordering of chromosomes in eukaryotes and the implications of the order for genome evolution and phenotypic variation, in: “Genome Evolution”, G. A. Dover and R. B. Flavell, eds., Academic Press, London.Google Scholar
  7. Britten, R. J. and Kohne, D. E., 1968 Repeated sequences in DNA, Science 161: 529–540.PubMedCrossRefGoogle Scholar
  8. Burr, B. and Burr, F. A., 1982 Ds controlling elements of maize at the shrunken locus are large and dissimilar insertions, Cell 29: 977–986.PubMedCrossRefGoogle Scholar
  9. Cavalier-Smith, T., 1978 Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate and the solution of the DNA C-value paradox, J. Cell Science 34: 247–278.PubMedGoogle Scholar
  10. Dennis, E. S., Gerlach, W. L. and Peacock, W. J., 1980 Identical polypyrimidine polypurine satellite DNA in wheat and barley, Heredity 44: 345–366.CrossRefGoogle Scholar
  11. Deumling, B., 1981 Sequence arrangement of a highly methylated satellite DNA of a plant, Scilla: a tandemly repeated inverted repeat. Proc. Nat. Acad. Sei. 78: 338–342.CrossRefGoogle Scholar
  12. Deumling, B. and Greilhuber, J., 1982 Characterisation of heterochromatin in different species of the Scilla siberica group (Liliaceae) by in situ hybridisation of satellite DNAs and fluorochrome banding, Chromosorna 84: 535–555.CrossRefGoogle Scholar
  13. Dover, G. A., 1982 Molecular drive: a cohesive mode of species evolution, Nature 299: 111–117.PubMedCrossRefGoogle Scholar
  14. Dover, G. A., Brown, S., Coen, E., Dallas, J., Strachan, T. and Trick, M., 1982, The dynamics of genome evolution and species differentiation, in “Genome Evolution”, G. A. Dover and R. B. Flavell, eds., Academic Press, London.Google Scholar
  15. Evans, G. M., Rees, H., Snell, C. L. and Sun, S., 1972, The relationship between nuclear DNA amount and the characterisation of the mitotic cycle, in “Chromosomes Today” Longman, London 3:24–31.Google Scholar
  16. Flavell, R. B., 1980, The molecular characterisation and organisation of plant chromosomal DNA sequences. Ann. Rev. Plant Physiol. 31:569–596.CrossRefGoogle Scholar
  17. Flavell, R. B., 1982, Amplification, deletion and rearrangement; major sources of variation during species divergence, in “Genome Evolution”, G. A. Dover and R. B. Flavell, eds. Academic Press, London, pp 301–324.Google Scholar
  18. Flavell, R. B., Bennett, M. D., Smith, J. B. and Smith, D. B., 1974, Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics 12:257–269.PubMedCrossRefGoogle Scholar
  19. Flavell, R. B., O’Dell, M. and Hutchinson, J., 1981 Nucleotide sequence organisation in plant chromosomes and evidence for sequence translocation during evolution, Cold Spring Harbor Symp’m Quant. Biol. 45: 501–508.CrossRefGoogle Scholar
  20. Flavell, R. B., Rimpau, J. and Smith, D. B., 1977 Repeated sequence DNA relationships in four cereal genomes, Chromosorna (Berl.) 63: 205–222.CrossRefGoogle Scholar
  21. Flavell, R. B., Rimpau, J., Smith, D. B., O’Dell, M. and Bedbrook, J. R., 1979, The evolution of plant genome structure, in “Plant Genome Organisation and Expression”, C. J. Leaver, ed., Plenum Press, pp 35-47.Google Scholar
  22. Flavell, R. B. and Smith, D. B., 1974 Variation in nucleolus organiser rRNA gene multiplicity in wheat and rye, Chromosorna (Berl.) 47: 327–334.CrossRefGoogle Scholar
  23. Gerlach, W. L. and Peacock, W. J., 1980 Chromosomal locations of highly repeated DNA sequences in wheat, Heredity 44: 269–276.CrossRefGoogle Scholar
  24. Hinegardner, R., 1976, Evolution of genome size, in “Molecular Evolution”, F. J. Ayala, ed., Sinaver Associates Inc. Mass. pp 179-199.Google Scholar
  25. Hutchinson, J. and Lonsdale, D., 1982, The chromosomal distribution of cloned highly repetitive sequences from hexarploid wheat, Heredity 48, 371–376.CrossRefGoogle Scholar
  26. John, B. and Miklos, G. L. G., 1979 Functional aspects of heterochromatin and satellite DNA, Int. Rev. Cytol. 58: 1–114.PubMedCrossRefGoogle Scholar
  27. Jones, J. D. G. and Flavell, R. B., 1982a, The organizing of highly repeated DNA families and their relationship to C bands in chromosomes of Secale cereale, Chromosoma, in press.Google Scholar
  28. Jones, J. D. G. and Flavell, R. B., 1982b, The structure, amount and chromosomal localisation of defined repeated DNA sequences in species of the genus Secale, Chromosoma, in press.Google Scholar
  29. Klein, H. L. and Petes, T. D., 1981 Intrachromosomal gene conversion in yeast, Nature 289: 144–148.PubMedCrossRefGoogle Scholar
  30. Martin, P. G., 1966 Variation in the amounts of nucleic acids in the cells of different species, Exp’l Cell. Res. 44: 84–90.CrossRefGoogle Scholar
  31. Mikus, M. D. and Petes, T. D., 1982 Recombination between genes located on non-homologous chromosomes in Saccharymyces cerevisiae, Genetics 101: 369–404.PubMedGoogle Scholar
  32. Nagylaki, T. and Petes, T. D., 1982 Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes, Genetics 100: 315–337.PubMedGoogle Scholar
  33. Petes, T. D., 1980 Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes, Cell 19: 765–774.PubMedCrossRefGoogle Scholar
  34. Rimpau, J., Smith, D. B. and Flavell, R. B., 1978 Sequence organisation analysis of the wheat and rye genomes by interspecies DNA/DNA hybridisation, J. Molec. Biol. 123: 327–359.PubMedCrossRefGoogle Scholar
  35. Scherer, S. and Davis, R. W., 1980 Recombination of dispersed repeated DNA sequences in yeast, Science 209: 1380–1384.PubMedCrossRefGoogle Scholar
  36. Schweizer, D. and Ehrendorfer, F., 1982, Evolution of C band patterns in Asteraceae-Anthemideae, Biol. Zbl., in press.Google Scholar
  37. Smith, G. P., 1976 Evolution of repeated DNA sequences by unequal crossover, Science 191: 528–535.PubMedCrossRefGoogle Scholar
  38. Stern, H. and Hotta, Y., 1978 Regulatory mechanism in meiotic crossing over, Ann. Rev. Plant. Physiol. 29: 415–436.CrossRefGoogle Scholar
  39. Szostak, J. W. and Wu, R., 1980 Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae, Nature 284: 426–430.PubMedCrossRefGoogle Scholar
  40. Thomas, J. B. and Kaltsikes, P. J., 1976 A bouquet-like attachment plate for telomeres in leptotene of rye revealed by heterochromatin staining, Heredity 36: 155–162.CrossRefGoogle Scholar
  41. Thompson, W. F. and Murray, M. G., 1980, Sequence organisation in pea and mung bean DNA and a model for genome evolution, in “Fourth John Innes Symposium”, D. R. Davies and D. A. Hopwood, eds., John Innes Institute, Norwich, U.K., pp 31–45.Google Scholar
  42. Zimmer, E. A., Martin, S. L., Beverley, S. M., Kan, Y. W. and Wilson, A. C., 1980, Rapid duplication and loss of genes coding for the α chains of hemoglobin, Proc. Nat. Acad. Sei. USA, 77:2158–2162.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • R. B. Flavell
    • 1
  1. 1.Plant Breeding InstituteTrumpington CambridgeEngland

Personalised recommendations