Exogenous Peptides and Schizophrenia

  • Man Mohan Singh
  • Stanley R. Kay


The discovery that a group of systemic peptide hormones belonging to the hypothalamic-pituitary system is distributed in other parts of the central nervous system (CNS) and have neuronal functions in addition to their hormonal duties, and that another group of neuroactive peptides is distributed both in the brain and in the digestive tract and related structures, has been a development of major importance in neuroendocrinology and the neurosciences (Krieger and Martin, 1981a,b). The neuronal and hormonal activities of the neurohumoral peptides, though coordinated in some cases, are often served by different components of the peptide molecules (Marx, 1975a,b; de Kloet and de Wied, 1980). The brain and gut functions of the brain-gut peptides may also be independent, although the observation of prompt increase in gastric secretion by intrahypothalamic injection of gastrin in rats suggests that the two may, in some cases, be connected (Tepperman and Evered, 1980). The possibility of the latter is also suggested by the finding that cholecystokinins (CCKs) in the gut may come from the brain along the vagus (Dockray, 1979). However, CCKs are unusual among neuropeptides with both CNS and peripheral distributions, in that their CNS concentrations are much greater than those in the periphery (Emson et al., 1980; Krieger and Martin, 1981a).


Celiac Disease Vasoactive Intestinal Peptide Coeliac Disease Vasoactive Intestinal Polypeptide Wheat Gluten 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akil, H., Richardson, D. E., Barchas, J. D., and Li, C. H., 1978, Appearance of β-endorphin-like immunoreactivity in human ventricular cerebrospinal fluid upon analgesic electrical stimulation, Proc. Natl Acad. Sci. USA 75:5170.PubMedCrossRefGoogle Scholar
  2. Andén, N. E., 1972, Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and anti-acetylcholine drugs, J. Pharm. Pharmacol. 24:905.PubMedCrossRefGoogle Scholar
  3. Anderson, C.M., Gracey, M., and Burke, V., 1972, Coeliac disease: Some still controversial aspects, Arch. Dis. Child. 47:292.PubMedCrossRefGoogle Scholar
  4. Ashkenazi, A., Krasilowsky, D., Levin, S., Idar, D., Kalian, M., Or, A., Ginat, Y., and Halperin, B., 1979, Immunologic reaction of psychotic patients to fractions of gluten, Am. J. Psychiatry 136:1306.PubMedGoogle Scholar
  5. Ashkenazi, A., Levin, S., and Idar, D., 1981, Immunological assays for coeliac disease, Lancet 11:687.CrossRefGoogle Scholar
  6. Asperger, H., 1961, Die psychopathologie des coeliakiekranken kindes, Ann. Paediatr. 197: 346.PubMedGoogle Scholar
  7. Bateson, G., Jackson, D. D., Haley, J., and Weakland, J., 1956, Toward a theory of schizophrenia, Behav. Sci. 1:251.CrossRefGoogle Scholar
  8. Bender, L., 1953, Childhood schizophrenia, Psychiatr. Q. 27:663.PubMedCrossRefGoogle Scholar
  9. Black, J. A., 1964, Possible factors in the incidence of coeliac disease, Acta Paediatr. 53:109.PubMedCrossRefGoogle Scholar
  10. Bohus, B., 1979, Effects of ACTH-like neuropeptides on animal behavior and man, Pharmacology 18:113.PubMedCrossRefGoogle Scholar
  11. Brown, G. W., and Birley, J. L. T., 1968, Crises and life changes and the onset of schizophrenia, J. Health Soc. Behav. 9:203.PubMedCrossRefGoogle Scholar
  12. Brown, G. W., Birley, J. L. T., and Wing, J. K., 1972, Influence of family life on the course of schizophrenic disorders: A replication, Br. J. Psychiatry 121:241.PubMedCrossRefGoogle Scholar
  13. Carlsson, A., 1978, Antipsychotic drugs, neurotransmitters, and schizophrenia, Am. J. Psychiatry 135:164.Google Scholar
  14. Challacombe, D. N., MacCulloch, M. J., and Birtles, C. J., 1972, Controlled measures of exploratory movement in a coeliac child during gluten withdrawal, Arch. Dis. Child. 47:823.PubMedCrossRefGoogle Scholar
  15. Connell, P. H., 1958, Amphetamine Psychosis, Maudsley Monograph No. 5, Chapman & Hall, London.Google Scholar
  16. Cooke, W. T., 1976, Neurological manifestations of malabsorption, in: Handbook of Clinical Neurology, Vol. 28, Metabolic and Deficiency Diseases of the Nervous System (P. J. Vinken and G. W. Bruyn, eds., in collaboration with H. L. Klawans), pp. 225–239, Elsevier/North-Holland, Amsterdam.Google Scholar
  17. Crane, G. E., 1978, Tardive dyskinesia and related neurologic disorders, in: Handbook of Psychopharmacology, Vol. 10, Neuroleptics and Schizophrenia (L. L. Iversen, S.D. Iversen, and S. H. Snyder, eds.), pp. 165–196, Plenum Press, New York.CrossRefGoogle Scholar
  18. Crayton, J. W., and Meltzer, H. Y., 1976, Motor endplate alterations in schizophrenic patients, Nature (London) 264:658.CrossRefGoogle Scholar
  19. Creese, I., Burt, D. R., and Snyder, S. H., 1978, Biochemical actions of neuroleptic drugs: Focus on dopamine receptors, in: Handbook of Psychopharmacology, Vol. 10, Neuroleptics and Schizophrenia (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), pp. 37–89, Plenum Press, New York.CrossRefGoogle Scholar
  20. Crow, T. J., 1978, An evaluation of the dopamine hypotheses of schizophrenia, in: The Biological Basis of Schizophrenia (G. Hemmings and W. A. Hemmings, eds.), pp. 63–78, MTP Press, Lancaster, U.K.Google Scholar
  21. Dale, P. W., 1981, Prevalence of schizophrenia in the Pacific Island populations of Micronesia, J. Psychiatr. Res. 16:103.PubMedCrossRefGoogle Scholar
  22. Daynes, G., 1956, Bread and tears—Naughtiness, depression and fits due to wheat sensitivity, Proc. R. Soc. Med. 49:391.PubMedGoogle Scholar
  23. Deakin, J. F. W., 1980, Opiates, opioid peptides and their possible relevance to schizophrenia, in: Biochemistry of Schizophrenia and Addiction (G. Hemmings, ed.), pp. 39–51, University Park Press, Baltimore.CrossRefGoogle Scholar
  24. de Kloet, R., and de Wied, D., 1980, The brain as target tissue for hormones of pituitary origin: Behavioral and biochemical studies, in: Frontiers in Neuroendocrinology, Vol. 6 (L. Martini and W. F. Ganong, eds.), pp. 157–201, Raven Press, New York.Google Scholar
  25. de Wied, D., Bohus, B., van Ree, J. M., and Urban, I., 1978a, Behavioral and electrophysiological effects of peptides related to lipotropin (β-LPH), J. Pharmacol. Exp. Ther. 204:570.PubMedGoogle Scholar
  26. de Wied, D., Kovács, G. L., Bohus, B., van Ree, J. M., and Greven, H. M., 1978b, Neuroleptic activity of the neuropeptide β-LPH62–77 ([des-Tyr1]-γ-endorphin; DTγE), Eur. J. Pharmacol. 49:427.PubMedCrossRefGoogle Scholar
  27. de Wied, D., van Ree, J. M., and Greven, H. M., 1980, Neuroleptic-like activity of peptides related to (des-Tyr1)-γ-endorphin: Structure activity studies, Life Sci. 26:1575.PubMedCrossRefGoogle Scholar
  28. Dockray, G. J., 1979, Cholecystokinin in brain and gut: Origins, evolution and identity, in: Gut Peptides, Secretion, Function and Clinical Aspects (A. Miyoshi, ed.), pp. 237–244, Elsevier/ North-Holland, Amsterdam.Google Scholar
  29. Dohan, F. C., 1966a, Wartime changes in hospital admissions for schizophrenia: A comparison of admission for schizophrenia and other psychoses in six countries during WWII, Acta Psychiatr. Scand. 42:1.PubMedCrossRefGoogle Scholar
  30. Dohan, F. C., 1966b, Cereals and schizophrenia: Data and hypothesis, Acta Psychiatr. Scand. 42:125.PubMedCrossRefGoogle Scholar
  31. Dohan, F. C., 1969a, Schizophrenia: Possible relationship to cereal grains and celiac disease, in: Schizophrenia: Current Concepts and Research (D. V. D. Siva-Sankar, ed.), pp. 539–551, P. J. D. Publications, Hicksville, N.Y.Google Scholar
  32. Dohan, F. C., 1969b, Is celiac disease a clue to the pathogenesis of schizophrenia?, Ment. Hyg. 53:525.PubMedGoogle Scholar
  33. Dohan, F. C., 1970, Coeliac disease and schizophrenia, Lancet I:897.CrossRefGoogle Scholar
  34. Dohan, F. C., 1978, Schizophrenia: Are some food-derived polypeptides pathogenic? Coeliac disease as a model, in: The Biological Basis of Schizophrenia (G. Hemmings and W. A. Hemmings, eds.), pp. 167–177, MTP Press, Lancaster, U.K.Google Scholar
  35. Dohan, F. C., 1979a, Celiac-type diets in schizophrenia [letter], Am. J. Psychiatry 136:733.Google Scholar
  36. Dohan, F. C., 1979b, Schizophrenia: Glutens and neuroleptics, Biol. Psychiatry 14:851.PubMedGoogle Scholar
  37. Dohan, F. C., 1980, Hypothesis: Genes and neuroactive peptides from food as cause of schizophrenia, in: Neural Peptides and Neuronal Communication (E. Costa and M. Trabucchi, eds.), pp. 535–548, Raven Press, New York.Google Scholar
  38. Dohan, F. C., and Grasberger, J. C., 1973, Relapsed schizophrenics: Earlier discharge from the hospital after cereal-free, milk-free diet, Am. J. Psychiatry 130:685.PubMedGoogle Scholar
  39. Dohan, F. C., Grasberger, J. C., Lowell, F. M., Johnston, H. T., Jr., and Arbegast, A. W., 1969, Relapsed schizophrenics: More rapid improvement on milk- and cereal-free diet, Br. J. Psychiatry 115:595.PubMedCrossRefGoogle Scholar
  40. Dohan, F. C., Martin, L., Grasberger, J. C., Boehme, D., and Cottrell, J. C., 1972, Antibodies to wheat gliadin in blood of psychiatric patients: Possible role of emotional factors, Biol. Psychiatry 5:127.PubMedGoogle Scholar
  41. Dohan, F. C., Harper, E. H., Clark, M. H., Rodriguez, R., and Zigas, V., 1982, Where is schizophrenia rare? Paper presented at 38th Annual Convention of Society of Biological Psychiatry, New York City.Google Scholar
  42. Dorsa, D. M., van Ree, J. M., and de Wied, D., 1979, Effects of (des-Tyr1)-γ-endorphin and α-endorphin on substantia nigra self-stimulation, Pharmacol. Biochem. Behav. 10:899.PubMedCrossRefGoogle Scholar
  43. Durell, J., and Archer, E. G., 1976, Plasma proteins in schizophrenia: A review, Schizophr. Bull. 2:147.PubMedGoogle Scholar
  44. Ellinwood, E. H., Jr., Sudilovsky, A., and Nelson, L. M., 1973, Evolving behavior in the clinical and experimental amphetamine (model) psychoses, Am. J. Psychiatry 130:1088.PubMedGoogle Scholar
  45. Emrich, H. M. (ed.), 1981, The Role of Endorphins in Neuropsychiatry, Karger, Basel.Google Scholar
  46. Emrich, H. M., Zaudig, M., von Zerssen, D., Kissling, W., Dirlich, G., and Herz, A., 1981, Action of [des-Tyr1]-γ-endorphin in schizophrenia, Mod. Probl. Pharmacopsychiatry 17:279.PubMedGoogle Scholar
  47. Emson, P. C., Fahrenkrug, J., and Spokes, E. G. S., 1979, Vasoactive intestinal polypeptide (VIP): Distribution in normal human brain and in Huntington’s disease, Brain Res. 173:174.PubMedCrossRefGoogle Scholar
  48. Emson, P. C., Hunt, S. P., Rehfeld, J. F., Golterman, N., and Fahrenkrug, J., 1980, Cholecys-tokinin and vasoactive intestinal polypeptide in the mammalian CNS: Distribution and possible physiological roles, in: Neural Peptides and Neuronal Communication (E. Costa and M. Trabucchi, eds.), pp. 63–74, Raven Press, New York.Google Scholar
  49. Ersparmer, V., 1970, Progress report: Caerulein, Gut 11:79.CrossRefGoogle Scholar
  50. Fleiss, J. L., Gurland, B. J., and Cooper, J. E., 1971, Some contributions to the measurement of psychopathology, Br. J. Psychiatry 119:647.PubMedCrossRefGoogle Scholar
  51. Franzén, G., and Ingvar, D. H., 1975, Abnormal distribution of cerebral activity in chronic schizophrenia, J. Psychiatr. Res. 12:199.PubMedCrossRefGoogle Scholar
  52. Freed, W. J., Luchins, D. J., Gillin, J. C., and Wyatt, R. J., 1978, Wheat gluten impedes absorption of haloperidol, Biol. Psychiatry 13:769.PubMedGoogle Scholar
  53. Ganzina, F., and Santamaria, A., 1976, Caerulein (ceruletide): A review, Acta Gastroenterol. Belg. 39:169.PubMedGoogle Scholar
  54. Gianutsos, G., Drawbaugh, R. B., Hynes, M. D., and Lal, H., 1974, Behavioral evidence for dopaminergic supersensitivity after chronic haloperidol, Life Sci. 14:887.PubMedCrossRefGoogle Scholar
  55. Gowdy, J. M., 1980, Immunoglobulin levels in psychotic patients, Psychosomatics 21:751.PubMedGoogle Scholar
  56. Graff, H., and Handford, A., 1961, Celiac syndrome in the case history of five schizophrenics, Psychiatr. Q. 35:306.PubMedCrossRefGoogle Scholar
  57. Grant, E. C., 1972, Nonverbal communication in the mentally ill, in: Non-Verbal Communication (R. A. Hinde, ed.), pp. 349–358, Cambridge University Press, London.Google Scholar
  58. Greenberg, R., Whalley, C. E., Jourdikian, F., Mendelson, I. S., Walter, R., Nikolics, K., Coy, D. H., Schally, A. V., Kastin, A. J., 1976, Peptides readily penetrate the blood-brain barrier: Uptake of peptides by synaptosomes is passive, Pharmacol. Biochem. Behav. (Suppl.) 5:151.CrossRefGoogle Scholar
  59. Hansen, O., 1972, Blood nucleoside and nucleotide studies in mental disease, Br. J. Psychiatry 121:341.PubMedCrossRefGoogle Scholar
  60. Heistad, D. D., Marcus, M. L., Said, S. I., and Gross, P. M., 1980, Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow, Am. J. Physiol. 239:H73.PubMedGoogle Scholar
  61. Hekkens, W. T. J. M., Schipperijn, A. J. M., and Freed, D. L. J., 1980, Antibodies to wheat proteins in schizophrenia: Relationship or coincidence, in: The Biochemistry of Schizophrenia and Addiction (G. Hemmings, ed.), pp. 125–133, University Park Press, Baltimore.CrossRefGoogle Scholar
  62. Hemmings, W. A., 1978a, The absorption of large breakdown products of dietary proteins into the body tissues including brain, in: The Biological Basis of Schizophrenia (G. Hemmings and W. A. Hemmings, eds.), pp. 239–257, MTP Press, Lancaster, U.K.Google Scholar
  63. Hemmings, W. A., 1978b, The entry into the brain of large molecules derived from dietary protein, Proc. R. Soc. London (Biol.) 200:175.CrossRefGoogle Scholar
  64. Henry, J. L., 1977, Substance P and pain: A possible relation in afferent transmission, in: Substance P (U. S. Von Euler and B. Pernow, eds.), pp. 231–240, Raven Press, New York.Google Scholar
  65. Hökfelt, T., Johansson, O., Ljungdahl, Å, Lundberg, J. M., and Schultzberg, M., 1980a, Peptidergic neurones, Nature (London) 284:515.CrossRefGoogle Scholar
  66. Hökfelt, T., Rehfeld, J. F., Skirboll, L., Ivemark, B., Goldstein, M., and Markey, K., 1980b, Evidence for coexistence of dopamine and CCK in meso-limbic neurones, Nature (London) 285:476.CrossRefGoogle Scholar
  67. Hökfelt, T., Lundberg, J. M., Schultzberg, M., Johansson, O., Ljungdahl, Å., and Rehfeld, J., 1980c, Coexistence of peptides and putative transmitters in neurons, in: Neural Peptides and Neural Communication (E. Costa and M. Trabucchi, eds.), pp. 1–23, Raven Press, New York.Google Scholar
  68. Horrobin, D. F., 1977, Schizophrenia as a prostaglandin deficiency disease, Lancet I:936.CrossRefGoogle Scholar
  69. Ingvar, D. H., and Franzén, G., 1974, Distribution of cerebral activity in chronic schizophrenia, Lancet II:1484.CrossRefGoogle Scholar
  70. Jaffé, J. H., and Martin, W. R., 1975, Narcotic analgesics and antagonists, in: The Pharmacological Basis of Therapeutics (L. S. Goodman and A. Gilman, eds.), pp. 245–283, Macmillan Co., New York.Google Scholar
  71. Jacquet, Y. F., and Marks, N., 1976, The C-fragment of β-lipotropin: An endogenous neuroleptic or antipsychotogen?, Science 194:632.PubMedCrossRefGoogle Scholar
  72. Käser, H., 1961, Diagnose and klinik der coeliakie, Ann. Paediatr. 197:320.Google Scholar
  73. Kastin, A. J., Olson, R. D., Schally, A. V., and Coy, D. H., 1979a, CNS effects of peripherally administered brain peptides, Life Sci. 25:401.PubMedCrossRefGoogle Scholar
  74. Kastin, A. J., Ehrensing, R. H., Coy, D. H., Schally, A. V., and Kostrzewa, R. M., 1979b, Behavioral effects of brain peptides, including LH-RH, in: Psychoneuroendocrinology in Reproduction: An Interdisciplinary Approach (L. Zichella and P. Pancheri, eds.), pp. 69–80, Elsevier/North-Holland, Amsterdam.Google Scholar
  75. Kay, S. R., and Singh, M. M., 1979, Cognitive abnormality in schizophrenia: A dual-process model, Biol. Psychiatry 14:155.PubMedGoogle Scholar
  76. Klawans, H. L., 1973, The pharmacology of tardive dyskinesia, Am. J. Psychiatry 118:509.Google Scholar
  77. Klee, W. A., and Zioudrou, C., 1980, The possible actions of peptides with opioid activity derived from pepsin hydrolysates of wheat gluten and of other constituents of gluten in the function of the central nervous system, in: The Biochemistry of Schizophrenia and Addiction (G. Hemmings, ed.), pp. 53–76, University Park Press, Baltimore.CrossRefGoogle Scholar
  78. Kolata, G. B., 1978, Polypeptide hormones: What are they doing in cells?, Science 201:895.PubMedCrossRefGoogle Scholar
  79. Koranyi, L., Whitmoyer, D. I., and Sawyer, C. H., 1977, Effect of thyrotropin-releasing hormone, luteinizing hormone-releasing hormone, and somatostatin on neuronal activity of brain stem reticular formation and hippocampus in the female rat, Exp. Neurol. 57:807.PubMedCrossRefGoogle Scholar
  80. Kovács, G. L., Bohus, B., and Versteeg, D. H. G., 1979, The effects of vasopressin on memory processes: The role of noradrenergic neurotransmission, Neuroscience 4:1529.PubMedCrossRefGoogle Scholar
  81. Krieger, D. T., and Martin, J. B., 1981a, Brain peptides, N. Engl. J. Med. 304:876.PubMedCrossRefGoogle Scholar
  82. Krieger, D. T., and Martin, J. B., 1981b, Brain peptides, N. Engl. J. Med. 304:944.PubMedCrossRefGoogle Scholar
  83. Langer, D. H., Brown, G. L., and Docherty, J. P., 1981, Dopamine receptor supersensitivity and schizophrenia: A review, Schizophr. Bull. 7:208.PubMedGoogle Scholar
  84. Larsson, L. I., Edvinsson, L., Fahrenkrug, J., Håkanson, R., Owman, C., Schaffalitzky de Muckadell, O., and Sundler, F., 1976, Immunohistochemical localization of a vasodilatory polypeptide (VIP) in cerebrovascular nerves, Brain. Res. 113:400.PubMedCrossRefGoogle Scholar
  85. Levine, R. A., Briggs, G. W., Harding, R. S., and Noite, L. B., 1966, Prolonged gluten administration in normal subjects, N. Engl. J. Med. 274:1109.PubMedCrossRefGoogle Scholar
  86. Levy, D. L., and Weinreb, H. J., 1976, Wheat gluten—Schizophrenia findings, Science 194:448.CrossRefGoogle Scholar
  87. Lidz, T., 1973, Origin and Treatment of Schizophrenic Disorders, Basic Books, New York.Google Scholar
  88. Luchins, D. J., Freed, W. J., Potkin, S., Rosenblatt, J. E., Gillin, J. C., and Wyatt, R. J., 1980, Wheat gluten and haloperidol [letter], Biol. Psychiatry 15:819.PubMedGoogle Scholar
  89. McGuffin, P., Gardiner, P., and Swinburne, L. M., 1981, Schizophrenia, celiac disease and antibodies to food, Biol. Psychiatry 16:281.PubMedGoogle Scholar
  90. Mackay, A. V. P., 1979, Psychiatric implications of endorphin research, Br. J. Psychiatry 135:470.PubMedCrossRefGoogle Scholar
  91. Manowitz, P., 1978, Amino acid levels in schizophrenia: A clue to etiology, Biol. Psychiatry 13:489.PubMedGoogle Scholar
  92. Martin, W. R., 1967, Opioid antagonists, Pharmacol. Rev. 19:463.PubMedGoogle Scholar
  93. Marx, J. L., 1975a, Learning and behavior (I): Effects of pituitary hormones, Science 190:367.CrossRefGoogle Scholar
  94. Marx, J. L., 1975b, Learning and behavior (II): The hypothalamic peptides, Science 190:545.Google Scholar
  95. Mascord, I., Freed, D., and Durant, B., 1978, Antibodies to foodstuffs in schizophrenia, Br. Med. J. 1:1351.PubMedCrossRefGoogle Scholar
  96. Mathysse, S., 1973, Antipsychotic drug actions, a clue to the neuropathology of schizophrenia?, Fed. Proc. 32:200.Google Scholar
  97. Mathysse, S. W., and Kety, S. S. (eds.), 1975, Catecholamines and Schizophrenia, Pergamon Press, Elmsford, N.Y.Google Scholar
  98. Matthews, D. M., and Adibi, S. A., 1976, Peptide absorption, Gastroenterology 71:151.Google Scholar
  99. Matthews, D. M., and Payne, J. W. (eds.), 1975, Peptide Transport in Protein Nutrition, Elsevier, Amsterdam.Google Scholar
  100. Meltzer, H. Y., and Stahl, S. M., 1976, The dopamine hypothesis of schizophrenia: A review, Schizophr. Bull. 2:19.PubMedGoogle Scholar
  101. Moroji, T., Watanabe, N., Aoki, N., and Itoh, S., 1982, Antipsychotic effects of caerulein, a decapeptide chemically related to cholecystokinin octapeptide, on chronic schizophrenia, Arch. Gen. Psychiatry 39:485.PubMedCrossRefGoogle Scholar
  102. Nygaard, J. A., Foss, T., and Trygstad, O., 1981, Chromatographic profiles of urinary peptide-protein complexes in patients considered to have a schizophrenic-autistic syndrome, Presented at the Illrd World Congress of Biological Psychiatry, Stockholm.Google Scholar
  103. Owman, C., Edvinsson, L., and Nielsen, K. C., 1974, Autonomic neuroreceptor mechanisms in brain vessels, Blood Vessels 11:2.PubMedGoogle Scholar
  104. Oyama, T., Jin, T., Yamaya, R., Ling, N., and Guillemin, R., 1980, Profound analgesic effects of β-endorphin in man, Lancet I:122.CrossRefGoogle Scholar
  105. Pandey, R. S., Gupta, A. K., and Chaturvedi, U. C., 1981, Autoimmune model of schizophrenia with special reference to antibrain antibodies, Biol. Psychiatry 16:1123.PubMedGoogle Scholar
  106. Paulley, J. W., 1959, Emotion and personality in the etiology of steatorrhea, Am. J. Dig. Dis. 4:352.PubMedCrossRefGoogle Scholar
  107. Plotnikoff, N. P., White, W. F., Kastin, A. J., and Serially, A. V., 1975, Gonadotropin releasing hormone (GnRH): Neuropharmacological studies, Life Sci. 17:1685.PubMedCrossRefGoogle Scholar
  108. Potkin, S. G., Weinberger, D., Kleinman, J., Nasrallah, H., Luchins, D., Bigelow, L., Linnoila, M., Fischer, S. H., Bjornsson, T. D., Carman, J., Gillin, J. C., and Wyatt, R. J., 1981, Wheat gluten challenge in schizophrenic patients, Am. J. Psychiatry 138:1208.PubMedGoogle Scholar
  109. Prugh, D. G., 1951, A preliminary report on the role of emotional factors in idiopathic celiac disease, Psychosom. Med. 13:220.PubMedGoogle Scholar
  110. Pulkkinen, E., 1980, Some connections between immunoglobulins and schizophrenia, in: Biochemistry of Schizophrenia and Addiction (G. Hemmings, ed.), pp. 111–124, University Park Press, Baltimore.CrossRefGoogle Scholar
  111. Randrup, A., and Munkvad, I., 1965, Special antagonism of amphetamine-induced abnormal behavior: Inhibition of stereotyped activity with increase of some normal activities, Psychopharmacologia 7:416.PubMedCrossRefGoogle Scholar
  112. Randrup, A., and Munkvad, I., 1966, Role of catecholamines in the amphetamine excitatory response, Nature (London) 211:540.CrossRefGoogle Scholar
  113. Randrup, A., and Munkvad, I., 1967, Stereotyped activities produced by amphetamine in several animal species and man, Psychopharmacologia 11:300.PubMedCrossRefGoogle Scholar
  114. Randrup, A., and Munkvad, I., 1972, Evidence indicating an association between schizophrenia and dopaminergic hyperactivity in the brain, J. Orthomol Psychiatry 1:2.Google Scholar
  115. Rapoport, S. I., Klee, W. A., Pettigrew, K. D., and Ohno, K., 1980, Entry of opioid peptides into the central nervous system, Science 207:84.PubMedCrossRefGoogle Scholar
  116. Reichelt, K. L., Hole, K., Hamberger, A., Saelid, G., Edminson, P. D., Braestrup, C. B., Lingjaerde, O., Ledaal, P., and Orbeck, H., 1981, Biologically active peptide-containingfractions in schizophrenia and childhood autism, in: Neurosecretion and Brain Peptides (J. B. Martin, S. Reichlin, and K. L. Bick, eds.), pp. 627–643, Raven Press, New York.Google Scholar
  117. Rice, J. R., Ham, C. H., and Gore, W. E., 1978, Another look at gluten in schizophrenia, Am. J. Psychiatry 135:1417.PubMedGoogle Scholar
  118. Robinson, S. E., 1983, Cholinergic pathways in the brain, in: Central Cholinergic Mechanisms and Adaptive Dysfunctions (M. M. Singh, D. M. Warburton, and H. Lal, eds.), Plenum Press, New York.Google Scholar
  119. Rudin, D. O., 1980, The choroid plexus and system disease in mental illness. I. A new brain attack mechanism via the second blood-brain barrier, Biol. Psychiatry 15:517.PubMedGoogle Scholar
  120. Rudin, D. O., 1981a, The choroid plexus and system disease in mental illness. III. The exogenous peptide hypothesis of mental illness, Biol. Psychiatry 16:489.PubMedGoogle Scholar
  121. Rudin, D. O., 1981b, The major psychoses and neuroses as omega-3 essential fatty acid deficiency syndrome: Substrate pellagra, Biol. Psychiatry 16:837.PubMedGoogle Scholar
  122. Said, S. I., 1979, Vasoactive intestinal polypeptide (VIP) as a neural peptide, in: Gut Peptides, Secretion, Function and Clinical Aspects (A. Moyoshi, ed.), pp. 268–274, Elsevier/North-Holland, Amsterdam.Google Scholar
  123. Sandler, M., 1978, The dopamine hypothesis revisited, in: The Biological Basis of Schizophrenia (G. Hemmings and W. A. Hemmings, eds.), pp. 79–85, MTP Press, Lancaster, U.K.Google Scholar
  124. Singh, M. M., 1978, Some insights into the pathogenesis of schizophrenia, in: The Biological Basis of Schizophrenia (G. Hemmings and W. A. Hemmings, eds.), pp. 179–195, MTP Press, Lancaster, U.K.Google Scholar
  125. Singh, M. M., 1979a, Celiac-type diets in schizophrenia [letter], Am. J. Psychiatry 136:733.Google Scholar
  126. Singh, M. M., 1979b, Schizophrenia: Glutens and neuroleptics [letter], Biol. Psychiatry 14:853.Google Scholar
  127. Singh, M. M., and Kay, S. R., 1975a, A comparative study of haloperidol and chlorpromazine in terms of clinical effects and therapeutic reversal with benztropine in schizophrenia: Theoretical implications for potency differences among neuroleptics, Psychopharmacologia 43:103.PubMedCrossRefGoogle Scholar
  128. Singh, M. M., and Kay, S. R., 1975b, A longitudinal therapeutic comparison between two prototype neuroleptics (haloperidol and chlorpromazine) in matched groups of schizophrenics: Nontherapeutic interactions with trihexyphenidyl. Theoretical implications for potency differences, Psychopharmacologia 43:115.PubMedCrossRefGoogle Scholar
  129. Singh, M. M., and Kay, S. R., 1975c, Therapeutic reversal with benztropine in schizophrenics: Practical and theoretical significance, J. Nerv. Ment. dis. 160:258.PubMedCrossRefGoogle Scholar
  130. Singh, M. M., and Kay, S. R., 1976a, Wheat gluten as a pathogenic factor in schizophrenia, Science 191:401.PubMedCrossRefGoogle Scholar
  131. Singh, M. M., and Kay, S. R., 1975b, Gluten and schizophrenia, technical comment letter, Lancet II:689.Google Scholar
  132. Singh, M. M., and Kay, S. R., 1976c, Wheat gluten—Schizophrenia findings, Science 194:448.CrossRefGoogle Scholar
  133. Singh, M. M., and Kay, S. R., 1978a, Nosological and prognostic distinctions in schizophrenia: Pharmacological validation in terms of therapeutic antagonism between anticholinergic anti-Parkinsonism drugs and neuroleptics, Neuropsychobiology 4:288.PubMedCrossRefGoogle Scholar
  134. Singh, M. M., and Kay, S. R., 1978b, Therapeutic antagonism between anticholinergics and neuroleptics: Possible involvement of cholinergic mechanisms in schizophrenia, Schizophr. Bull. 4:3.Google Scholar
  135. Singh, M. M., and Lal, H., 1982, Central cholinergic mechanisms, neuroleptic action and schizophrenia, in: Clinical Applications of Neuropharmacology (W. Essman and L. Valzelli, eds.), pp. 337–389, Spectrum, New York.Google Scholar
  136. Singh, M. M., and Smith, J. M., 1973, Reversal of some therapeutic effects of an antipsychotic agent by an anti-Parkinsonism drug, J. Nerv. Ment. Dis. 157:50.PubMedCrossRefGoogle Scholar
  137. Smith, J. M., 1976, Wheat gluten—Schizophrenia findings [letter], Science 194:448.CrossRefGoogle Scholar
  138. Snyder, S. H., 1973, Amphetamine psychosis: A “model” schizophrenia mediated by catecholamines, Am. J. Psychiatry 130:61.PubMedGoogle Scholar
  139. Stevens, J. R., 1973, An anatomy of schizophrenia?, Arch. Gen. Psychiatry 29:177.PubMedCrossRefGoogle Scholar
  140. Taylor, M., 1978, A preliminary investigation of dietary constituents and amphetamine-induced abnormal behavior, in: The Biological Basis of Schizophrenia (G. Hemmings and W. A. Hemmings, eds.), pp. 213–216, MTP Press, Lancaster, U.K.Google Scholar
  141. Tepperman, B. L., and Evered, M. D., 1980, Gastrin injected into the lateral hypothalamus stimulates gastric acid in rats, Science 209:1142.PubMedCrossRefGoogle Scholar
  142. Townley, R. W., and Anderson, C.M., 1967, Coeliac disease: A review, Ergeb. Inn. Med. Kinderheilkd. 26:1.PubMedGoogle Scholar
  143. Trygstad, O. E., Reichelt, K. L., Foss, I., Edminson, P. D., Saelid, G., Bremer, J., Hole, K., Orbeck, H., Johansen, J. H., Boler, J. B., Titlestad, K., and Opstad, P. K., 1980, Patterns of peptides and protein-associated peptide complexes in psychiatric disorders, Br. J. Psychiatry 136:59.PubMedCrossRefGoogle Scholar
  144. Vanderwolf, C. H., and Robinson, T. E., 1981, Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis, Behav. Brain. Sci. 4:459.CrossRefGoogle Scholar
  145. van Praag, H. M., Verhoeven, W. M. A., van Ree, J. M., and de Wied, D., 1982, The treatment of schizophrenic psychoses with 7-type endorphins, Biol. Psychiatry 17:83.PubMedGoogle Scholar
  146. van Ree, J. M., Verhoeven, W. M. A., van Praag, H. M., and de Wied, D., 1981, Neuroleptic-like and antipsychotic effects of 7-type endorphins, Mod. Probl. Pharmacopsychiatry 17:266.PubMedGoogle Scholar
  147. Weinberger, D. R., Torrey, E. F., Neophytides, A. N., and Wyatt, R. J., 1979a, Lateral cerebral ventricular enlargement in chronic schizophrenia, Arch. Gen. Psychiatry 36:735.PubMedCrossRefGoogle Scholar
  148. Weinberger, D. R., Torrey, E. F., Neophytides, A. N., and Wyatt, R. J., 1979b, Structural abnormalities in the cerebral cortex of chronic schizophrenic patients, Arch. Gen. Psychiatry 36:935.PubMedCrossRefGoogle Scholar
  149. Williams, E. W., 1979a, The effect of dietary wheat protein on rat behavior, J. Orthomol. Psychiatry 8:113.Google Scholar
  150. Williams, E. W., 1979b, Transmission of dietary proteins through the adult rat gut, in: Protein Transmission through Living Membranes (W. A. Hemmings, ed.), pp. 259–268, Elsevier/ North-Holland, Amsterdam.Google Scholar
  151. Williams, E. W., and Hemmings, W. A., 1978, Intestinal uptake and transport of proteins in the adult rat, Proc. R. Soc. London (Biol.) 203:177.CrossRefGoogle Scholar
  152. Williams, E. W., and Wood, H. P., 1981, The effect of wheat proteins on rat behavior and the effect of naloxone hydrochloride on this response, Nutr. Res. 1:187.CrossRefGoogle Scholar
  153. Woodley, J. F., Sterchi, E. E., Bridges, J. F., Forsyth, T., Faulkner, L., Lucy, J., and Makin, A., 1980, The digestion and absorption of dietary protein, in: The Biochemistry of Schizophrenia and Addiction (G. Hemmings, ed.), pp. 277–285, University Park Press, Baltimore.CrossRefGoogle Scholar
  154. Zetler, G., 1980a, Anticonvulsant effects of caerulein and cholecystokinin octapeptide, compared with those of diazepam, Eur. J. Pharmacol. 65:297.PubMedCrossRefGoogle Scholar
  155. Zetler, G., 1980b, Effects of cholecystokinin-like peptides on rearing activity and hexobarbital-induced sleep, Eur. J. Pharmacol. 66:137.PubMedCrossRefGoogle Scholar
  156. Zetler, G., 1980c, Analgesia and ptosis caused by caerulein and cholecystokinin octapeptide (CCK-8), Neuropharmacology 19:415.PubMedCrossRefGoogle Scholar
  157. Zetler, G., 1981, Central depressant effects of caerulein and cholecystokinin octapeptide (CCK-8) differ from those of diazepam and haloperidol, Neuropharmacology 20:277.PubMedCrossRefGoogle Scholar
  158. Ziemba, T., Meltzer, H. Y., and Davis, J. M., 1978, Do anticholinergics antagonize antipsychotic drug action?, Schizophr. Bull. 4:7.PubMedGoogle Scholar
  159. Zioudrou, C., and Klee, W. A., 1979, Possible roles of peptides derived from food proteins in brain function, in: Nutrition and the Brain, Vol. 4 (R. J. Wurtman and J. J. Wurtman, eds.), pp. 125–158, Raven Press, New York.Google Scholar
  160. Zioudrou, C., Streaty, R. A., and Klee, W. A., 1979, Opioid peptides derived from food proteins: The exorphins, J. Biol. Chem. 254:2446.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Man Mohan Singh
    • 1
  • Stanley R. Kay
    • 2
  1. 1.Creedmoor Psychiatric CenterQueens VillageUSA
  2. 2.Bronx Psychiatric Center and Albert Einstein College of MedicineNew YorkUSA

Personalised recommendations