Developments in the analysis of amino acids and peptides by gas chromatography—mass spectrometry (GC/MS) have occurred in a chemical rather than a microbiological context. The presentation in this chapter, therefore, describes advances in technique and structural determination and is leavened, where possible, with examples drawn from the application of GC/MS to microbial metabolism and biochemistry. This chapter does not purport to be an exhaustive review of the relevant literature. Citations have been omitted not from an inherent lack of merit or relevance but because they are accessible through later citations of the same authors or through the more specialized reviews cited.


Amino Acid Derivative Butyl Ester Chemical Ionization Mass Spectrometry Aliphatic Amino Acid Field Desorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, F. P., McCaman, M. W., and McCaman, R. E., 1974, Femtomole level of analysis of biogenic amines and amino acids using functional group mass spectrometry, Anal. Biochem. 57:482.PubMedGoogle Scholar
  2. Adams, R. F., 1974, Determination of amino acid profiles in biological samples by gas chromatography, J. Chromatogr. 95:189.PubMedGoogle Scholar
  3. Adams, R. F., Vandemark, F. L., and Schmidt, G. J., 1977, Ultramicro GC determination of amino acids using glass open tubular columns and a nitrogen-selective detector, J. Chromatogr. Sci. 15:63.PubMedGoogle Scholar
  4. Anderegg, R. J., Biemann, K., Manmade, A., and Ghosh, A. C., 1979, Mass spectrometric peptide sequencing: Cyclochlorotine, Biomed. Mass Spectrom. 6:129.PubMedGoogle Scholar
  5. Andersson, C.-O., 1958, Mass spectrometric studies on amino acid and peptide derivatives, Acta Chem. Scand. 12:1353.Google Scholar
  6. Aragozzini, F., Ferrari, A., Pacini, N., and Gualandris, R., 1979, Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterîum spp., Appl. Environ. Microbiol. 38:544.PubMedGoogle Scholar
  7. Batley, K. E., and Morris, H. R., 1977, Dihydrofolate reductase: Partial sequence of the Lactobacillus casei enzyme and homology with other dihydrofolate reductases, Biochem. Soc. Trans. 5:1097.PubMedGoogle Scholar
  8. Bengtsson, G., and Odham, G., 1979, A micromethod for the analysis of free amino acids by gas chromatography and its application to biological systems, Anal. Biochem. 92:426.PubMedGoogle Scholar
  9. Bengtsson, G., Odham, G., and Westerdahl, G., 1981, Glass capillary gas Chromatographie analysis of free amino acids in biological microenvironments using electron capture or selected ion-monitoring detection, Anal. Biochem. 111:163.PubMedGoogle Scholar
  10. Benninghoven, A., and Sichtermann, W. K., 1978, Detection, identification and structural investigation of biologically important compounds by secondary ion mass spectrometry, Anal. Chem. 50:1180.PubMedGoogle Scholar
  11. Beuhler, R. J., Flanigan, E., Greene, L. J., and Friedman, L., 1974a, Proton transfer mass spectrometry of underivatized peptides, Biochemistry 13:5060.PubMedGoogle Scholar
  12. Beuhler, R. J., Flanigan, E., Greene, L. J., and Friedman, L., 1974b, Proton transfer mass spectrometry of peptides. A rapid heating technique for underivatized peptides containing arginine, J. Am. Chem. Soc. 96:3990.PubMedGoogle Scholar
  13. Biemann, K., Gapp, F., and Seibl, J., 1959, Application of mass spectrometry to structure problems. I. Amino acid sequence in peptides, J. Am. Chem. Soc. 81:2274.Google Scholar
  14. Blau, K., and King, G., 1978, Handbook of Derivatives for Chromatography ,Heyden and Son, Ltd., London.Google Scholar
  15. Budzikiewicz, H., and Meissner, G., 1978, Chemical ionization spectra of trimethylsilylated amino acids and oligopeptides, Org. Mass. Spectrom. 13:608.Google Scholar
  16. Calas, B., Mery, J., Parello, J., Prome, J. C., Roussel, J., and Patouraux, D., 1980, Field desorption mass spectrometry of basic peptides. An approach to the sequencing of arginine-containing peptides, Biomed. Mass Spectrom. 7:288.Google Scholar
  17. Cancalon, P., and Klingman, J. D., 1974, An improved procedure for preparing the n-butyltrifluoroacetyl amino acid derivatives and its application in the study of radioactive amino acids from biological sources, J. Chromatogr. Sci. 12:349.PubMedGoogle Scholar
  18. Caprioli, R. M., and Seifert, W. E., 1975, Hydrolysis of polypeptides and proteins utilizing a mixture of dipeptidylaminopeptidases with analysis by GC/MS, Biochem. Biophys. Res. Commun. 64:295.PubMedGoogle Scholar
  19. Cattabeni, F., Galli, C. L., and Eros, T., 1976, A simple and highly sensitive mass fragmentographic procedure for gamma amino butyric acid determinations, Anal. Biochem. 72:1.PubMedGoogle Scholar
  20. Cotter, R. J., 1980, Mass spectrometry of nonvolatile compounds; Desorption from extended probes, Anal. Chem. 52:1589A.Google Scholar
  21. Coulter, A. W., and Fenselau, C. C., 1972, Variation of fragmentation with ring size in cyclic a-amino acids, Org. Mass Spectrom. 6:105.Google Scholar
  22. Das, B. C., Gero, S. D., and Lederer, E., 1967, lV-Methylation of N-acyl oligopeptides, Biochem. Biophys. Res. Commun. 29:211.PubMedGoogle Scholar
  23. Dell, A., and Morris, H. R., 1974, New observations on the fragmentation properties of peptides under electron impact mass spectrometry, Biochem. Biophys. Res. Commun. 61:1125.PubMedGoogle Scholar
  24. Dell, A., and Morris, H. R., 1977, A mass spectrometric strategy for the rapid screening of homologous proteins: Studies on a Pseudomonas azurin, Biochem. Biophys. Res. Com- mun. 78:874.PubMedGoogle Scholar
  25. Dell, A., Williams, D. H., Morris, H. R., Smith, G. A., Feeney, J., and Roberts, G. C. K., 1975, Structure revision of the antibiotic echinomycin, J. Am. Chem. Soc. 97:2497.PubMedGoogle Scholar
  26. DeJongh, D. C., Faus, F., Nayar, M. S. B., Boileau, G., and Brakier-Gingras, L., 1976. The use of lV-succinyl derivatives in the study of amino acids and peptides by mass spectrometry, Biomed. Mass Spectrom. 3:191.PubMedGoogle Scholar
  27. Desgres, J., Boisson, D., and Padieu, P., 1979, Gas-Liquid chromatography of isobutyl ester, N(O)-heptafluorobutyrate derivatives of amino acids on a glass capillary column for quantitative separation in clinical biology, J. Chromatogr. 162:133.PubMedGoogle Scholar
  28. Dillard, J. G., 1973, Negative ion mass spectrometry, Chem. Rev. 73:589.Google Scholar
  29. Engelfried, C., Koenig, W. A., and Voelter, W., 1976, Mass spectrometric investigation of peptide amides, Biomed. Mass Spectrom. 3:241.PubMedGoogle Scholar
  30. Fairwell, T., Barnes, W. T., Richards, F. F., and Lovins, R. E., 1970, Sequence analysis of complex protein mixtures by isotope dilution and mass spectrometry, Biochemistry 9:2260.PubMedGoogle Scholar
  31. Fairwell, T., Ellis, S., and Lovins, R. E., 1973, Quantitative protein sequencing using mass spectrometry: Thermally induced formation of thiohydantoin amino acid derivatives from iV-methyl and JV-phenylthiourea amino acids and peptides in the mass spectrometer, Anal. Biochem. 53:115.PubMedGoogle Scholar
  32. Fales, H. M., Nagai, Y., Milne, G. W. A., Brewer, H. B., Jr., Bronzert, T. J., and Pisano, J. J., 1971, Use of chemical ionization mass spectrometry in analysis of amino acid phenylthiohydantoin derivatives formed during Edman degradation of proteins, Anal. Biochem. 43:288.PubMedGoogle Scholar
  33. Fales, H. M., Milne, G. W. A., Winkler, H. U., Beckey, H. D., Damico, J. N., and Barron, R., 1975, Comparison of mass spectra of some biologically important compounds as obtained by various ionization techniques, Anal. Chem. 47:207.Google Scholar
  34. Felker, P., and Bandurski, R. S., 1975, Quantitative gas-liquid chromatography and mass spectrometry of the N(O)-perfluorobutyryl-O-isoamyl derivatives of amino acids, Anal. Biochem. 67:245.PubMedGoogle Scholar
  35. Frank, H., and Desiderio, D. M., 1978, Reduction of oligopeptides to amino alcohols with borane, Anal. Biochem. 90:413.PubMedGoogle Scholar
  36. Frank, H., Haegele, K. D., and Desiderio, D. M., 1977, Gas chromatography-mass spectrometry study of acetylacetonyl dipeptide methyl esters, Anal. Chem. 49:287.PubMedGoogle Scholar
  37. Frank, H., das Neves, H. J. C., and Bayer, E., 1978, Use of borane as reducing agent in sequence analysis of peptides by gas chromatography-mass spectrometry, J. Chromatogr. 152:357.Google Scholar
  38. Frick, W., Chang, D., Folkers, K., and Daves, G. D., Jr., 1977a, Critical experimental parameters in gas chromatographic-mass spectrometric analysis of oligopeptide hydrolysates at the picomole level, Anal. Chem. 49:1241.PubMedGoogle Scholar
  39. Frick, W., Daves, G. D., Jr., Barofsky, D. F., Barofsky, E., Fisher, G. H., Chang, D., and Folkers, K., 1977b, Sample derivatization and structure analysis by field desorption mass spectrometry. Peptide methylation-methanolysis, Biomed. Mass Spectrom. 4:152.PubMedGoogle Scholar
  40. Fujita, T., Takaishi, Y., and Shiromoto, T., 1979, New peptide antibiotic, Hypelcin A, from Hypocrea peltata, J. Chem. Soc, Chem. Commun. 413.Google Scholar
  41. Gaffney, J. S., Pierce, R. C., and Friedman, L., 1977, Mass spectrometer study of evaporation of a-amino acids, J. Am. Chem. Soc. 99:4293.PubMedGoogle Scholar
  42. Gelpi, E., Koenig, W. A., Gibert, J., and Oro, J., 1969, Combined gas chromatography-mass spectrometry of amino acid derivatives, J. Chromatogr. 7:604.Google Scholar
  43. Gerber, G. E., Anderegg, R. J., Herlihy, W. C., Gray, C. P., Biemann, K., and Khorana, H. G., 1979, Partial primary structure of bacteriorhodopsin: Sequencing methods for membrane proteins, Proc. Nat. Acad. Sci. USA 76:227.PubMedGoogle Scholar
  44. Gray, W. R., Wojcik, L. H., and Futrell, J. H., 1970, Application of mass spectrometry to protein chemistry II. Chemical ionization studies on acetylated permethylated peptides, Biochem. Biophys. Res. Commun. 41:1111.PubMedGoogle Scholar
  45. Grob, K., Grob, G., and Grob, K., Jr., 1979, Deactivation of glass capillary columns by silylation. Part I: Principles and basic technique, HRCCCJ. High Resolut. Chromatogr. Chromatogr. Commun. 1:31.Google Scholar
  46. Hansen, G., and Munson, B., 1978, Surface chemical ionization mass spectrometry, Anal. Chem. 50:1130.Google Scholar
  47. Hirota, A., Suzuki, A., Aizawa, K., and Tamura, S., 1974, Mass spectrometric determination of amino acid sequence in Cyl-2, a novel cyclotetrapeptide from Cylindrocladium scoparium, Biomed. Mass Spectrom. 1:15.PubMedGoogle Scholar
  48. Hunt, D. F., Stafford, G. C., Jr., Crow, F. W., and Russell, J. W., 1976, Pulsed positive negative ion chemical ionization mass spectrometry, Anal. Chem. 48:2098.Google Scholar
  49. Hunt, D. F., Ðuko, A. M., Ballard, J., and Shabanowitz, J., 1979, Polypeptide sequencing by mass spectrometry: New methodology, Proc. 27th Annual Conference on Mass Spectrometry and Allied Topics ,Seattle, Washington, p. 608.Google Scholar
  50. Husek, P., 1974, Derivation of amino acids with 1,3-dichlorotetrafluoroacetone and its use in gas chromatography, J. Chromatogr. 91:475.PubMedGoogle Scholar
  51. Husek, P., and Macek, K., 1975, Gas chromatography of amino acids, J. Chromatogr. 113:139.PubMedGoogle Scholar
  52. Iwase, H., and Murai, A., 1977, On the derivatives for the ultramicro determination of amino acids by mass fragmentography, Anal. Biochem. 78:340.PubMedGoogle Scholar
  53. Jayasimhulu, K., and Day, R. A., 1980a, Electron impact fragmentation of oxazoles and oxazinones derived from leucine and isoleucine, Biomed. Mass Spectrom. 7:7.Google Scholar
  54. Jayasimhulu, K., and Day, R. A., 1980b, Mass spectrometric determination of TV terminal tryptophan and N- terminal histidine in peptides, Biomed. Mass Spectrom. 7:321.Google Scholar
  55. Jennings, W., 1980, Evolution and application of the fused silica column HRCCC., J. High Resolut. Chromatogr. Chromatogr. Commun. 3:601.Google Scholar
  56. Jönsson, J., Eyem, J., and Sjöquist, J., 1973, Quantitative gas Chromatographic analysis of amino acids on a short glass capillary column, Anal. Biochem. 51:204.PubMedGoogle Scholar
  57. Kaiser, F. E., Gehrke, C. W., Zumwalt, R. W., and Kuo, K. C., 1974, Amino acid analysis. Hydrolysis, ion-exchange clean-up, derivatization, and quantitation by gas liquid chromatography, J. Chromatogr. 94:113.PubMedGoogle Scholar
  58. Kamal, F., Katz, E., and Mauger, A. B., 1978, Electrophoretic, Chromatographie and mass spectrometric procedures for the identification and isotopic assay of amino acid constituents in etamycin, J. Chromatogr. 151:245.Google Scholar
  59. Kamiya, Y., Sakurai, A., Tamura, S., Takahashi, N., Abe, K., Tsuchiya, E., Fukui, S., Kitada, C., and Fujino, M., 1978, Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides, Biochem. Biophys. Res. Commun. 83:1077.PubMedGoogle Scholar
  60. Katz, E., Mason, K. T., and Mauger, A. B., 1974, The presence of -amino-ß,-dihydroxybutyric acid in hydrolysates of actinomycin Z1, J. Antiobiot. XXVII:952.Google Scholar
  61. Katz, E., Mason, K. T., and Mauger, A. B., 1975, 3-Hydroxy-5-methylproline, a new amino acid identified as a component of actinomycin Z1, Biochem. Biophys. Res. Commun. 63:502.PubMedGoogle Scholar
  62. Kingston, E. E., and Duffield, A. M., 1978, Plasma amino acid quantitation using gas chromatography chemical ionization mass spectrometry and 13C amino acids as internal standards, Biomed. Mass Spectrom. 5:621.PubMedGoogle Scholar
  63. Knapp, D. R., 1979, Handbook of Analytical Derivatization Reactions ,Wiley-Interscience, New York.Google Scholar
  64. Kondrat, R. W., and Cooks, R. G., 1978, Direct analysis of mixtures by mass spectrometry, Anal. Chem. 50:81A.Google Scholar
  65. Krutzsch, H. C., and Kindt, T. J., 1979, The identification of trimethylsilylated dipeptides with chemical ionization mass spectrometry, Anal. Biochem. 92:525.PubMedGoogle Scholar
  66. Krutzsch, H. C., and Pisano, J. J., 1977, “Analysis of Dipeptides by Gas ChromatographyMass Spectrometry and Application to Sequencing with Dipeptidyl Aminopeptidases,” Methods in Enzymology ,(C. W. Hirs and S. N. Timasheff, eds.), Vol XLVII, pp. 391–404, Academic Press, New York.Google Scholar
  67. Krutzsch, H. C., and Pisano, J. J., 1978, Separation and sequence of dipeptides using gas chromatography and mass spectrometry of their trimethylsilylated derivatives, Biochemistry 17:2791.PubMedGoogle Scholar
  68. Lawless, J. G., and Chadha, M. C., 1971, Mass spectrometric analysis of C3 and C4 aliphatic amino acid derivatives, Anal. Biochem. 44:473.PubMedGoogle Scholar
  69. Leclercq, P. A., and Desiderio, D. M., 1973, Chemical ionization mass spectra of amino acids and derivatives. Occurrence and fragmentation of ion-molecule reaction products, Org. Mass. Spectrom. 7:515.Google Scholar
  70. Leimer, K. R., Rice, R. H., and Gehrke, C. W., 1977a, Complete mass spectra of lV-trifluoroacetyl-rt-butyl esters of amino acids, J. Chromatogr. 141:121.PubMedGoogle Scholar
  71. Leimer, K. R., Rice, R. H., and Gehrke, C. W., 1977b, Complete mass spectra of the per-trimethylsilylated amino acids, J. Chromatogr. 141:355.Google Scholar
  72. Liardon, R., Ott-Kuhn, U., and Husek, P., 1979, Mass spectra of -amino acid oxazolidinones, Biomed. Mass Spectrom. 6:381.PubMedGoogle Scholar
  73. Liardon, R., Ledermann, S., and Ott, U., 1981, Determination of D-amino acids by deuterium labelling and selected ion monitoring, J. Chromatogr. 203:385.Google Scholar
  74. Lindley, H., and Davis, P. C., Gas chromatography of some dipeptide derivatives, J. Chromatogr. 100:117.Google Scholar
  75. Loder, P. B., and Abraham, E. P., 1971, Isolation and nature of intra cellular peptides from a Cephalosporin C-producing Cephalosporium sp., Biochem. J. 123:471.PubMedGoogle Scholar
  76. Macfarlane, R. D., and Torgerson, D. F., 1976, Californium-252 plasma desorption mass spectrometry, Science 191:920.PubMedGoogle Scholar
  77. MacKenzie, S. L., 1981, “Recent Developments in Amino Acid Analysis by Gas-Liquid Chromatography,” in Methods of Biochemical Analysis (D. Glick, ed.), Vol. 27, pp. 1–88, Wiley-Interscience, New York.Google Scholar
  78. MacKenzie, S. L., and Hogge, L. R., 1977, Gas chromatography-mass spectrometry of the lV(O)-heptafluorobutyryl isobutyl esters of the protein amino acids using electron impact ionization, J. Chromatogr. 132:485.PubMedGoogle Scholar
  79. MacKenzie, S. L., and Tenaschuk, D., 1974, Gas liquid chromatography of N-heptafluorobutyryl isobutyl esters of amino acids, J. Chromatogr. 97:19.PubMedGoogle Scholar
  80. MacKenzie, S. L., and Tenaschuk, D., 1979a, Quantitative formation of N(O,S)- heptafluorobutyryl isobutyl amino acids for gas Chromatographic analysis. I. Esterification, J. Chromatogr. 171:195.Google Scholar
  81. MacKenzie, S. L. ,and Tenaschuk, D., 1979b, Quantitative formation of N(O,S)- heptafluorobutyryl isobutyl amino acids for gas Chromatographic analysis. II. Acylation, J. Chromatogr. 173:53.Google Scholar
  82. Mahajan, V. K., and Desiderio, D. M., 1978, Mass spectrometry of acetylated, permethylated and reduced oligopeptides, Biochem. Biophys. Res. Commun. 82:1104.Google Scholar
  83. Manhas, M. S., Hsieh, R. S., and Bose, A. K., 1970, Mass spectral studies. Part VII. Unusual fragmentation of some N-trifìuoroacetyl amino-acid methyl esters, J. Chem. Soc, C. 116.Google Scholar
  84. March, J. F., 1975, Modified technique for the quantitative analysis of amino acids by gas chromatography using heptafluorobutyric rc-propyl derivatives, Anal. Biochem. 69:420.PubMedGoogle Scholar
  85. Marik, J. ,Capek, A., and Kralicek, J., 1976, Gas chromatography-mass spectrometry of trimethylsilyl derivatives of -amino acids, J. Chromatogr. 128:1.PubMedGoogle Scholar
  86. Martinez, E., and Gelpi, E., 1978, Mixed pentafluoropropionyl trimethylsilyl derivatives of 5-hydroxytryptophan for mass fragmentographic detection. Development of a retention index model for substituted indoles, J. Chromatrogr. 167:77.Google Scholar
  87. Maugh, T., 1980, Separations by MS speed up, simplify analysis, Science 209:675.PubMedGoogle Scholar
  88. McReynolds, J. H., and Anbar, M., 1977, Isotopic assay of nanomole amounts of nitrogen-15 labeled amino acids by collision-induced dissociation mass spectrometry, Anal. Chem. 49:1832.PubMedGoogle Scholar
  89. Mee, J. M. L., Korth, J., Halpern, B., and James, L. B., 1977, Rapid and quantitative blood amino acid analysis by chemical ionization mass spectrometry, Biomed. Mass Spectrom. 4:178.PubMedGoogle Scholar
  90. Meot-Ner, M., and Field, F. H., 1973, Chemical ionization mass spectrometry. XX. Energy effects and virtual ion temperature in the decomposition kinetics of amino acids and amino acid derivatives, J. Am. Chem. Soc. 95:7207.PubMedGoogle Scholar
  91. Meuzelaar, H. L. C., Posthumus, M. A., Kistemaker, P. G., and Kistemaker, J., 1973, Curie point pyrolysis in direct combination with low voltage electron impact ionization mass spectrometry. New method for the analysis of nonvolatile organic materials, Anal. Chem. 45:1546.Google Scholar
  92. Morris, H. R., 1972, Studies towards the complete sequence determination of proteins by mass spectrometry; a rapid procedure for the successful permethylation of histidine containing peptides, FEBS (Fed. Eur. Biochem. Soc.) Lett. 22:257.Google Scholar
  93. Morris, H. R., 1980, Biomolecular structure determination by mass spectrometry, Nature 286:447.PubMedGoogle Scholar
  94. Morris, H. R., and Dell, A., 1975, The sequence of the blocked N-terminal peptide from Neurospora glutamate dehydrogenase, Biochem. J. 149:754.PubMedGoogle Scholar
  95. Morris, H. R., Williams, D. H., and Ambler, R. P., 1971, Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry, Biochem. J. 125:189.PubMedGoogle Scholar
  96. Morris, H. R., Dickinson, R. J., and Williams, D. H., 1973, Studies towards the complete sequence determination of proteins by mass spectrometry: Derivatization of methionine, cysteine and arginine containing peptides, Biochem. Biophys. Res. Commun. 51:247.PubMedGoogle Scholar
  97. Morris, H. R., Batley, K. E. ,Harding, N. G. L. ,Bjur, R. A., Dann, J. G., and King, R. W., 1974, Dihydrofolate reductase: Low-resolution mass-spectrometric analysis of an elastase digest as a sequencing tool, Biochem. J. 137:409.PubMedGoogle Scholar
  98. Moss, C. W., Lambert, M. A., and Diaz, F. J., 1971, GLC of twenty protein amino acids on a single column, J. Chromatogr. 60:134.PubMedGoogle Scholar
  99. Mudgett, M., Bowen, D. V., Kindt, T. J., and Field, F. H., 1975, C-Methylation: An Artifact in peptides derivatized for sequencing by mass spectrometry, Biomed. Mass Spectrom. 2:254.Google Scholar
  100. Mudgett, M., Bowen, D. V., Field, F. H., and Kindt, T. J., 1977, Peptide sequencing: The utility of chemical ionization mass spectrometry, Biomed. Mass Spectrom. 4:159.PubMedGoogle Scholar
  101. Mudgett, M., Sogn, J. A., Bowen, D. V., and Field, F. H., 1978, Peptide sequencing by chemical ionization mass spectrometry, Adv. Mass Spectrom. 7B:1506.Google Scholar
  102. Nakagawa, Y., Nakazawa, T., and Shoji, J., 1975, On the structure of a new antibiotic TL-119 (Studies on antibiotics from the genus Bacillus. VI), J. Antibiot. 28:1004.PubMedGoogle Scholar
  103. Nau, H., 1974, New dideutero-perfluoroalkylated oligopeptide derivatives for proteinsequencing by gas chromatography-mass spectrometry, Biochem. Biophys. Res. Comm. 59:1088.PubMedGoogle Scholar
  104. Nau, H., 1976, Gas chromatography-mass spectrometry of permethylated peptides and their reduced and trimethylsilylated derivatives, J. Chromatogr. 121:376.PubMedGoogle Scholar
  105. Nau, H., 1978, Sequencing of polypeptides containing asparagine and glutamine residues by gas chromatography-mass spectrometry, Adv. Mass Spectrom. 7B:I5I8.Google Scholar
  106. Nau, H., and Biemann, K., 1976a, Amino acid sequencing by gas chromatography-mass spectrometry using perfluoro-dideuteroalkylated peptide derivatives. A. Gas Chromatographie retention indices, Anal. Biochem. 73:139.PubMedGoogle Scholar
  107. Nau, H., and Biemann, K., 1976b, Amino acid sequencing by gas chromatography-mass spectrometry using perfluoro-dideuteroalkylated peptide derivatives. B. Interpretation of the mass spectra, Anal. Biochem. 73:154.PubMedGoogle Scholar
  108. Okada, K., and Sakuno, A., 1978, Identification of amino acid thiohydantoin derivatives by chemical ionization mass spectrometry, Org. Mass Spectrom. 13:535.Google Scholar
  109. Okada, K., Nagai, S. ,Uyehara, T., and Hiramoto, M., 1974, A study of some new and useful lV-terminal groups in mass spectrometry of peptides. The use of 3-hydroxyalkanoyl and unsaturated acyl groups, Tetrahedron 30:1175.Google Scholar
  110. Padieu, P., Desgres, J., and Maume, B. F., 1978a, Chemical ionization in capillary column gas chromatography-quadropole mass spectrometry: An ideal combination for structure proof and fragmentation mechanism elucidation as well as for isotopic dilution mass fragmentography, Finnigan Spectra 7:No. 1.Google Scholar
  111. Padieu, P., Desgres, J., Maume, B. F., Van der Velde, G., and Skinner ,R. S., 1978b, Investigation of the chemical ionization of amino acid derivatives for biological studies, Adv. Mass Spectrom. 7B:1604.Google Scholar
  112. Pandey, R. C., Meng, H., Cook, J. C., Jr., and Rinehart, K. L., Jr., 1977, Structure of antiamoebin I from high resolution field desorption and gas Chromatographic mass spectrometry studies, J. Am. Chem. Soc. 99:5203.PubMedGoogle Scholar
  113. Patil, G. V., Hamilton ,R. E., and Day, R. A., 1973, Schiff base derivatives of peptide esters: Relative abundance of N-terminal, C-terminal and “internal” fragments as a function of the blocking group, Org. Mass Spectrom. 7:817.Google Scholar
  114. Pearce, R. J., 1977, Amino acid analysis by gas-liquid chromatography of N- heptafluorobutyryl isobutyl esters. Complete resolution using a support-coated opentubular capillary column, J. Chromatogr. 136:113.PubMedGoogle Scholar
  115. Pereira, W. E., Hoyano, Y., Reynolds, W. E., Summons, R. E., and Duffield, A. M., 1973, Simultaneous quantitation of ten amino acids in soil extracts by mass fragmentography, Anal. Biochem. 55:236.PubMedGoogle Scholar
  116. Poole, C. F., and Verzele, M., 1978, Separation of protein amino acids as their iV(O)-acyl alkyl ester derivatives on glass capillary columns, J. Chromatogr. 150:439.Google Scholar
  117. Priddle, J. D., 1974, The use of mass-spectrometry to complement conventional techniques for protein sequence determination, Biochem. J. 139:23.PubMedGoogle Scholar
  118. Priddle, J. D., Rose, K., and Offord, R. E., 1976a, The separation and sequencing of permethylated peptides by mass spectrometry directly coupled to gas-liquid chromatography, Biochem. J. 157:777.PubMedGoogle Scholar
  119. Priddle, J. D., Rose, K., and Offord, R. E., 1976b, Direct sequencing of permethylated peptides by gas chromatography-mass spectrometry using electron impact and chemical ionization, Adv. Mass Spectrom. Biochem. Med. II:477.Google Scholar
  120. Priddle, J. D., Rose, K., and Offord, R. E., 1978, Amino acid sequence determination by direct e.i./c.i. mass spectrometry of N-acyl: N,O-permethylated oligopeptides separated by gas chromatography, Adv. Mass Spectrom. 7B:1502.Google Scholar
  121. Rafter, J. J., Ingelman-Sundberg, M., and Gustafsson, J.-A., 1979, Protein amino acid analysis by an isotope ratio gas chromatography mass spectrometry computer technique, Biomed. Mass Spectrom. 6:317.PubMedGoogle Scholar
  122. Rangarajan, M., Ardrey, R. E., and Darbre, A., 1973, Gas-liquid chromatography and mass spectrometry of amino acid thiohydantoins and their use in protein sequencing, J. Chromatogr. 87:499.PubMedGoogle Scholar
  123. Rash, J. J., Gehrke, C. W., Zumwalt, R. W., Kuo, K. C., Kvenvolden, K. A., and Stalling, D. L., 1972, GLC of amino acids: A survey of contamination, J. Chromatogr. Sci. 10:444.PubMedGoogle Scholar
  124. Robinson, J. R., Starratt, A. N., and Schlahetka, E. E., 1978, Estimation of nitrogen-15 levels in derivatized amino acids using gas chromatography-quadropole mass spectrometry with chemical ionization and selected ion monitoring, Biomed. Mass Spectrom. 5:648.Google Scholar
  125. Schier, G. M., Halpern, B., and Milne, G. W. A., 1974, Characterization of dipeptides by electron impact and chemical ionization mass spectrometry, Biomed. Mass Spectrom. 1:212.PubMedGoogle Scholar
  126. Schier, G. M., Bolton, P. D., and Halpern, B., 1976, The mass spectrometric identification of dipeptide mixtures obtained from dipeptidylaminopeptidase I-Hydrolysates, Biomed. Mass Spectrom. 3:32.PubMedGoogle Scholar
  127. Schulman, M. F., and Abramson, F. P., 1975, Plasma amino acid analysis by isotope ratio gas chromatography-mass spectrometry computer techniques, Biomed. Mass Spectrom. 2:9.PubMedGoogle Scholar
  128. Schulten, H.-R., 1977, “Field Desorption Mass Spectrometry and its Application in Biochemical Analysis,” in Methods of Biochemical Analysis (D. Glick, ed.), Vol. 24, pp. 313– 448, Wiley-Interscience, New York.Google Scholar
  129. Schulten, H.-R., and Wittmann-Liebold, B., 1976, High resolution field desorption mass spectrometry V. Mixtures of amino acid phenylthiohydantoins and Edman degradation products, Anal. Biochem. 76:300.PubMedGoogle Scholar
  130. Segura, J., Artigas, F., Martinez, E., and Gelpi, E., 1976, Adsorption of tryptophan metabolites from physiological fluids on XAD-2 and determination by single ion monitoring, Biomed. Mass Spectrom. 3:91.PubMedGoogle Scholar
  131. Seifert, W. E., Jr., McKee, R. E., Beckner, C. F., and Caprioli, R. M., 1978, Characterization of mixtures of dipeptides by gas chromatography-mass spectrometry, Anal. Biochem. 88:149.PubMedGoogle Scholar
  132. Shaw, W. V., Packman, L. C., Burleigh, B. D., Dell, A., Morris, H. R., and Hartley, B. S., 1979, Primary structure of a chloramphenicol acetyltransferase specified by R plasmids, Nature 282:870.PubMedGoogle Scholar
  133. Shieh, J.-J., Leung, K., and Desiderio, D. M., 1976, Basic mass spectrometric investigations of amino acid-fluorescamine derivatives, Org. Mass Spectrom. 11:479.Google Scholar
  134. Siezen, R. J., and Mague, T. H., 1977, Gas-liquid chromatography of the N- heptafluorobutyryl isobutyl esters of fifty biologically interesting amino acids, J. Chromatogr. 130:151.PubMedGoogle Scholar
  135. Sjöquist, B., 1979, Analysis of tyrosine and deuterium labelled tyrosine in tissues and body fluids, Biomed. Mass Spectrom. 6:392.PubMedGoogle Scholar
  136. Stapleton, B. J., and Bowie, J. H., 1976, Electron impact studies. CIII-Negative ion mass spectra of naturally occurring compounds: Nitrobenzoyl derivatives of amino esters, Org. Mass Spectrom. 11:429.Google Scholar
  137. Stimpson, B. P., and Evans, C. A., Jr., 1978, Electrohydrodynamic ionization mass spectrometry of biochemical materials, Biomed. Mass Spectrom. 5:52.PubMedGoogle Scholar
  138. Summons, R. E., Pereira, W. E., Reynolds, W. E., Rindfleisch, T. C., and Duffield, A. M., 1974, Analysis of twelve amino acids in biological fluids by mass fragmentography, Anal. Chem. 46:582.PubMedGoogle Scholar
  139. Sun, T., and Lovins, R. E., 1972, Quantitative protein sequencing using mass spectrometry: Use of low ionizing voltages in mass spectral analysis of methyland phenylthiohydantoin amino acid derivatives, Anal. Biochem. 45:176.PubMedGoogle Scholar
  140. Suzuki, T., Song, K.-D., Itagaki, Y., and Tuzimura, K., 1976, Mass spectrometric identication of amino acid thiohydantoins, Org. Mass Spectrom. 11:557.Google Scholar
  141. Tobe, H., Morishima, H., Naganawa, H., Takita, T., Aoyagi, T., and Umezawa, H., 1979, Structure and chemical synthesis of amastatin, Agr. Biol. Chem. 43:591.Google Scholar
  142. Tsang, C. W., and Harrison, A. G., 1976, Chemical ionization of amino acids, J. Am. Chem. Soc. 98:1301.PubMedGoogle Scholar
  143. Ueno, T., Nakashima, T., Uemoto, M., Fukami, H., Lee, S.-N., and Izumiya, N., 1977, Mass spectrometry of Altemaria mali toxins and related cyclodepsipeptides, Biomed. Mass Spectrom. 4:134.PubMedGoogle Scholar
  144. Voigt, D., and Schmidt, J., 1978, Negative ion mass spectrometry of natural products. VIII-a-amino acids, Biomed. Mass Spectrom. 5:44.PubMedGoogle Scholar
  145. Waern, R., and Falter, H., 1978, An approach to the differentiation of leucine and isoleucine residues in EI mass spectra of peptides, Biochem. Biophys. Res. Commun. 81:448.PubMedGoogle Scholar
  146. Weber, R., and Levsen, K., 1980, Collision induced dissociation of field desorbed diand tripeptides, Biomed. Mass Spectrom. 7:314.Google Scholar
  147. Wegmann, H., Curtius, H.-Ch., and Redweik, U., 1978, Selective ion monitoring of tryptophan, N- acetyltryptophan and kynurenine in human serum. Application to the in vivo measurement of tryptophan pyrrolase activity, J. Chromatogr. 158:305.PubMedGoogle Scholar
  148. Weinkam, R. J., 1978, Reactions of protonated diamino acids in the gas phase, J. Org. Chem. 43:2581.Google Scholar
  149. Wiecek, C., Halpern, B., Sargeson, A. M., 1979, The determination of steric purity of amines and amino acids by gas chromatography and mass spectrometry, Org. Mass Spectrom. 14:281.Google Scholar
  150. Wietzerbin, J., Das, C. D., Petit, J.-F., Lederer, E., Leyh-Bouille, M, and Ghuysen, J.M., 1974, Occurrence of D-alanyl-(D)-raesø-diaminopimelic acid and mesø-diaminopimelylmeso- diaminopimelic acid linkages in the peptidoglycan of Mycobacteria, Biochemistry 13:3471.PubMedGoogle Scholar
  151. Winkler, H. U., and Beckey, H. D., 1972, Field desorption mass spectrometry of amino acids, Org. Mass Spectrom. 6:655.Google Scholar
  152. Wipf, H. K., Irving, P., McCamish, M., Venkataraghavan, R., and McLafferty, F. W., 1973, Mass spectrometric studies of peptides. V. Determination of amino acid sequences in peptide mixtures by mass spectrometry, J. Am. Chem. Soc. 95:3369.Google Scholar
  153. Wolfensberger, M, Redwik, U., and Curtius, H.-Ch., 1979, Gas chromatography mass spectrometry and selected ion monitoring of the N,N-dipentafluoropropionyl hexafluoroisopropyl ester of glutamine, J. Chromatogr. 172:471.Google Scholar
  154. Zanetta, Z. P., and Vincendon, G., 1973, GLC of the N(O)-heptafluorobutyryl isoamyl esters of amino acids. 1. Separation and quantitative determination of the constituent amino acids of proteins, J. Chromatogr. 76:91.PubMedGoogle Scholar
  155. Ziemer, J. N., Perone, S. P., Caprioli, R. M., and Seifert, W. E., 1979, Computerized pattern recognition applied to gas chromatrography-mass spectrometry identification of pentafluoropropionyl dipeptide methyl esters, Anal. Chem. 51:1732.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Samuel L. MacKenzie
    • 1
  1. 1.Prairie Regional LaboratoryNational Research Council of CanadaSaskatoonCanada

Personalised recommendations