Fatty Acids and Complex Lipids

  • Cécile Asselineau
  • Jean Asselineau


Fatty acids are the basic components of the lipids of all microorganisms, except the group of Archaebacteria. Frequently unusual fatty acids are detected in bacterial lipids. Due to the easy volatilization of their methyl esters, fatty acids are conveniently analyzed by gas chromatography GC., but precise assignment of structure to a fatty acid detected as a peak in GC investigations is not always an easy task, and mass spectrometry MS has an important role to play. Much work has been performed on the analysis of fatty acids by GC/MS, mainly in the field of bacterial lipids, so the part devoted to fatty acids in this review is much larger than that concerning unvolatile complex lipids.


Fatty Acid Methyl Ester Complex Lipid Fatty Ester Mycolic Acid Cyclopropane Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agate, A. D., and Vishniac, W., 1973, Characterization of Thiobacillus species by gas-liquid chromatography of cellular fatty acids, Arch. Microbiol. 89:257.Google Scholar
  2. Ahlquist, L., Asselineau, C., Asselineau, J., Ställberg-Stenhagen, S., and Stenhagen, E., 1958, Synthesis of the cis and trans isomers of DL-erythro-2,4,6-trimethyl-2:3-tetracosanoic acid, Ark. Kemi 13:543.Google Scholar
  3. Amdur, B. H., Szabo, E. I., and Socransky, S. S., 1978, Presence of squalene in gram positive bacteria, J. Bacîeriol. 135:161.Google Scholar
  4. Andersson, B. A., 1978, Mass spectrometry of fatty acid pyrrolidides, Prog. Chem. Fats Other Lipids ,16:279.PubMedGoogle Scholar
  5. Andersson, B. A., and Holman, R. T., 1974, Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids, Lipids 9:185.PubMedGoogle Scholar
  6. Asselineau, C., Asselineau, J., Ryhage, R., Ställberg-Stenhagen, S., and Stenhagen, E., 1959, Synthesis of () methyl 2d, 4d, 6D-trimethylnonacosanoate, and identification of C32-mycocerosic acid as a 2,4,6,8-tetramethyloctacosanoic acid, Acta Chem. Scand. 13:822.Google Scholar
  7. Asselineau, C., Baess, I., Kolman, A., Lapchine, L., Puzo, G., and Wickmann, K., 1979, Comparative studies of the strains PA and PN of Mycobacterium phlei leading to their reclassification: examination of lipids and DNA, biochemical tests and phage typing, Ann. Microbiol. (Inst. Pasteur) 130B:385.Google Scholar
  8. Asselineau, C., Lacave, C., Montrozier, H., and Promé, J. C., 1970, Relations structurales entre les acides mycoliques insaturés et les acides inférieurs insaturés synthétisés par Mycobacterium phlei, Eur. J. Biochem. 14:406.PubMedGoogle Scholar
  9. Asselineau, C., Montrozier, H., and Promé, J. C., 1969, Structure des acides a-mycoliques isolés de la souche Canetti de Mycobacterium tuberculosis, Bull. Soc. Chim. Fr. 592.Google Scholar
  10. Asselineau, J., ed., 1966, The Bacterial Lipids ,Hermann, Paris and Holden-Day, San Francisco. Asselineau, J., Ryhage, R., and Stenhagen, E., 1957, Mass spectrometric studies on long chain methyl esters. A determination of the molecular weight and structure of mycocerosic acid, Acta Chem. Scand. 11:196.Google Scholar
  11. Ballio, A., and Barcellona, S., 1968, Relations chimiques et immunologiques chez les Actinomycétales. I. Les acides gras de 43 souches d’Actinomycètes aèrobies, Ann. Inst. Pasteur 114:121.Google Scholar
  12. Ballio, A., and Barcellona, S., 1971, Identification of 10-methyl-branched fatty acids in Microbispora parva by combined gas chromatography-mass spectrometry, Gazz. Chim. Ital. 101:635.Google Scholar
  13. Ballio, A., Casinovi, C. G., Framondino, M., Marino, G., Nota, G., and Santurbano, B., 1979, A new cerebroside from Fusicoccum amygdali DEL., Biochim. Biophys. Acta 573:51.PubMedGoogle Scholar
  14. Barber, M., Jollès, P., Vilkas, E., and Lederer, E., 1965a, Determination of amino acid sequences in oligopeptides by mass spectrometry. I. The structure of fortuitine, an acyl-nonapeptide methyl ester, Biochem. Biophys. Res. Commun. 18:469.PubMedGoogle Scholar
  15. Barber, M., Wolstenholme, W. A., Guinand, M., Michel, G., Das, B. C., and Lederer, E., 1965b, Determination of amino acid sequences in oligopeptides by mass spectrometry. II. The structure of peptidolipin NA, Tetrahedron Lett. 1331.Google Scholar
  16. Beilby, J. P., and Kidby, D. K., 1980, Sterol composition of ungerminated and germinated spores of the vesicular arbuscular mycorrhizal fungus Glomus caledonus, Lipids 15:375.Google Scholar
  17. Bird, C. W., Lynch, J. M., Pirt, F. J., Reid, W. W., Brooks, C. J. W., and Middletlitch, 1971, Steroids and squalene in Methylococcus capsulatus grown on methane, Nature (London) 230:473.Google Scholar
  18. Bishop, D. G., and Still, J. L., 1963, Fatty acid metabolism in Serratia marcescens. III. The constituent fatty acids of the cell, J. Lipid Res. 4:81.PubMedGoogle Scholar
  19. Boe, B. and Gjerde, J., 1980, Fatty acid patterns in the classification of some representatives of the Enterobacteriaceae and Vibrionaceae, J. Gen. Microbiol. 116:41.PubMedGoogle Scholar
  20. Boon, J. J., De Leeuw, J. W., van den Hoek, G. J., and Vosjan, J. H., 1977a, Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched ß-hydroxy acids in Desulfovibrio desulfuricans, J. Bacteriol. 129:1183.PubMedGoogle Scholar
  21. Boon, J. J., van de Graaf, B., Schuyl, P. J. W., De Lange, F., and De Leeuw, J. W., 1977b, The mass spectrometry of iso and anteiso monoenoic fatty acids, Lipids 12:717.PubMedGoogle Scholar
  22. Bordet, C., and Michel, G., 1963, Etude des acides gras isolés de plusieurs espèces de Nocardia, Biochim. Biophys. Acta 70:613.PubMedGoogle Scholar
  23. Bouvier, P., Rohmer, M., Benveniste, P., and Ourisson, G., 1976, 8(14)-Steroids in the bacterium Methylococcus capsulatus, Biochem. J. 159:267.PubMedGoogle Scholar
  24. Bowie, I. S., Grigor, M. R., Dunckley, G. G., Loutit, M. W., and Loutit, J. S., 1972, The DNA base composition and fatty acid constitution of some gram positive pleomorphic soil bacteria, Soil Biol. Biochem. 4:397.Google Scholar
  25. Campbell, I. M., and Naworal, J., 1969a, Mass spectral discrimination between monoenoic and cyclopropanoid, and between normal, 150 and anteiso fatty acid methyl esters, J. Lipid Res. 10:589.PubMedGoogle Scholar
  26. Campbell, I. M., and Naworal, J., 1969b, Composition of the saturated and monounsaturated fatty acids of Mycobacterium phlei, J. Lipid Res. 10:593.PubMedGoogle Scholar
  27. Carroll, K. K., Cutts, J. H., and Murray, E. G. D., 1968, The lipids of Listeria monocy to genes, Can. J. Biochem. 46:899.PubMedGoogle Scholar
  28. Carter, H. E., and Gaver, R. C., 1967, Branched chain sphingosines from Tetrahymena pyriformis, Biochem. Biophys. Res. Commun. 29:886.PubMedGoogle Scholar
  29. Caspi, E., 1980, Biosynthesis of tetrahymanol by Tetrahymena pyriformis Mechanistic and evolutionary implications, Accounts Chem. Res. 13:97.Google Scholar
  30. Chal, R., and Harrison, A. G., 1981, Location of double bonds by chemical ionization mass spectrometry, Anal. Chem. 53:34.Google Scholar
  31. Chan, M., Himes, R. H., and Akagi, J. M., 1971, Fatty acid composition of thermophilic, mesophilic and psychrophilic Clostridia, J. Bacteriol. 106:876.PubMedGoogle Scholar
  32. Corina, D. L., and Sesardic, D., 1980, Profile analysis of total mycolic acids from skin corynebacteria and from named Corynebacterium strains by gas-liquid chromatography and GC/MS, J. Gen. Microbiol. 116:61.PubMedGoogle Scholar
  33. Cronan, J. E., Nunn, W. D., and Batchelor, J. G., 1974, Studies on the biosynthesis of cyclopropane fatty acids in Escherichia coli, Biochim. Biophys. Acta 348:63.PubMedGoogle Scholar
  34. Degré, R., Higgins, R., Carbonneau, M., Bilodeau, M., and Hebert, J., 1980, Fatty acid composition of three strains of Leptospira interrogans serotype icterohemorrhagiae from highly virulent to avirulent, FEMS-Microbiol. Lett. 8:275.Google Scholar
  35. Dekker, R. F., Tietschel, E. T., and Sandermann, H., 1977, Isolation of a-glucan and lipopolysaccharide fractions from Acetobacter xylinum, Arch. Microbiol. 115:353.PubMedGoogle Scholar
  36. De Lederkremer, R. M., Casal, O. L., Tanaka, C. T., and Colli, W., 1978, Ceramide and inositol content of the lipopeptidophosphoglycan from Trypanosoma cruzi, Biochem. Biophys. Res. Commun. 85,1268.PubMedGoogle Scholar
  37. De Rosa, M., De Rosa, S., Gambacorta, A., and Bu’Lock, J. D., 1980, Structure of calditol, a new branched chain nonitol, and of the derived tetraether lipids in thermoacidophile archaebacteria of the Caldariella group, Phytochemistry 19:249.Google Scholar
  38. De Souza, N. J., and Nes, W. R., 1968, Sterols: Isolation from a blue-green alga, Science 162:363.PubMedGoogle Scholar
  39. Drucker, D. B., 1974, Aerobic streptococcal fatty acid fingerprints, Microbios 11A: 15.Google Scholar
  40. Eistert, B., 1948, “Syntheses with Diazomethane,” in Newer Methods of Preparative Organic Chemistry ,Wiley-Interscience, New York, pp. 513–570.Google Scholar
  41. Fak, K. E., Karlsson, K. A., and Samuelsson, B. E., 1980, Structural analysis by mass spectrometry and NMR spectroscopy of the glycolipid sulfate from Halobacterium salinarium and a note on its possible function, Chem. Phys. Lipids 27:9.Google Scholar
  42. Fischer, W., and Landgraf, H. R., 1975, Glycerophosphoryl phosphatidyl kojibiosyl diacylglycerol, a novel phosphoglucolipid from Streptococcus faecalis, Biochim. Biophys. Acta 380:227.PubMedGoogle Scholar
  43. Fisher-Hoch, S., Hudson, M. J., and Thompson, M. H., 1979, Identification of a clinical isolate as Legionella pneumophila by gas chromatography and mass spectrometry of cellular fatty acids, The Lancet No. 8138:323.Google Scholar
  44. Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S., and Woese, C. R., 1977, Classification of methanogenic bacteria by 16S ribosomal RNA characterization, Proc. Natl. Acad. Sci. U.S.A. ,74:4537.PubMedGoogle Scholar
  45. Fujino, Y., and Onishi, M., 1977, Structure of cerebroside in Aspergillus oryzae, Biochim. Biophys. Acta 486:161.Google Scholar
  46. Gailly, C., Sandra, P., Verzele, M., and Cocito, C., 1982, Analysis of mycolic acids of a group of Corynebacteria by capillary gas chromatography and mass spectrometry, Eur. J. Biochem. ,125:83.PubMedGoogle Scholar
  47. Gelpi, E., Oró, J., Schneider, H. J., and Bennett, E. O., 1968, Olefins of high molecular weight in two microscopic algae, Science 161:700.PubMedGoogle Scholar
  48. Gensler, W. J., and Marshall, J. P., 1977, Structure of mycobacterial bis-cyclopropane mycolates by mass spectrometry, Chem. Phys. Lipids ,19:128.PubMedGoogle Scholar
  49. Gerson, T., Patel, J. J., and Nixon, L. N., 1975, Some unusual fatty acids of Rhizobium, Lipids 10:134.PubMedGoogle Scholar
  50. Gmeiner, J., and Martin, H. H., 1976, Phospholipid and lipopolysaccharide in Proteus mirabilis and its stable protoplast L-form, Eur. J. Biochem. 67:487.PubMedGoogle Scholar
  51. Goodfellow, M., Orlean, P. A. B., Collins, M. D., Alshamaony, L., and Minnikin, D. E., 1978, Chemical and numerical taxonomy of strains received as Gordona aurantiaca, J. Gen. Microbiol. 109:57.Google Scholar
  52. Goren, M. B., Brokl, O., Das, B. C., and Lederer, E., 1971, Sulfolipid I of Mycobacterium tuberculosis ,strain H37 Rv. Nature of the acyl substituents, Biochemistry 10:72.PubMedGoogle Scholar
  53. Han, J., McCarthy, E. D., Calvin, M., and Benn, M. H., 1968, Hydrocarbon constituents of the blue-green algae Nostoc muscorum, Anacystis nidulans, Phormidium luridum and Chlorogloea fritschii, J. Chem. Soc. (C) 2785.Google Scholar
  54. Harvey, D. J., 1982, Picolinyl esters as derivatives for the structural determination of long chain branched and unsaturated fatty acids, Biomed. Mass Spectrom. ,9:33.Google Scholar
  55. Hase, S., and Rietschel, E. T., 1977, The chemical structure of the lipid A component of lipopolysaccharides from Chromobacterium violaceum NCTC 9694, Eur. J. Biochem. 75:23.PubMedGoogle Scholar
  56. Heefner, D. L., and Claus, G., 1978, Lipid and fatty acid composition of Gluconobacter oxydans before and after cytoplasmic membrane formation, J. Bacterioi 134:38.Google Scholar
  57. Hilker, D. R., Gross, M. L., Knoche, H. W., and Shively, J. M., 1978, The interpretation of the mass spectrum of an ornithine-containing lipid from Thiobacillus thiooxidans, Biomed. Mass Spectrom. 5:64.PubMedGoogle Scholar
  58. Hilker, D. R., Knoche, H. W., and Gross, M. L., 1979, Thermolysis chemical ionization of a complex polar lipid, Biomed. Mass Spectrom. 6:356.PubMedGoogle Scholar
  59. Hiramoto, M., Okada, K., and Nagai, S., 1970, The revised structure of viscosin, a peptide antibiotic, Tetrahedron Lett. 1087.Google Scholar
  60. Hunter, S. W., Fujiwara, T., and Brennan, P., 1982, Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae, J. Biol. Chem. ,257:15072.PubMedGoogle Scholar
  61. Hurlbert, R. E., Weckesser, J., Mayer, H., and Fromme, I., 1976, Isolation and characterization of the lipopolysaccharide of Chromatium vinosum, Eur. J. Biochem. 68:365.PubMedGoogle Scholar
  62. James, A. T., 1960, “Qualitative and Quantitative Determination of the Fatty Acids by Gas-Liquid Chromatography”, in Methods of Biochemical Analysis ,Wiley Interscience, New York, Vol. 8, pp. 1–59.Google Scholar
  63. Jamieson, G. R., 1970, “Structure Determination of Fatty Esters by Gas-Liquid Chromatography,” in Topics in Lipid Chemistry ,Logos Press Ltd., London, Vol. 1, pp. 107–159.Google Scholar
  64. Jantzen, E., Berdal, B. P., and Omland, T., 1979, Cellular fatty acid composition of Francisella tularensis, J. Clin. Microbiol. 10:928.PubMedGoogle Scholar
  65. Jantzen, E., Berdal, B. P., and Omland, T., 1980, Cellular fatty acid composition of Haemophilus species, Pasteurella multocida, Actinobacillus actinomycetemcomitans and Haemophilus vaginalis, Acta Path. Microbiol. Scand., Sect. B ,88:89.Google Scholar
  66. Jantzen, E., Bergan, T., and Bøvre, K., 1974, Gas chromatography of bacterial whole cell methanolysates. VI. Fatty acid composition of strains within Micrococcaceae, Acta Path. Microbiol. Scand., Sect. B ,82:785.Google Scholar
  67. Jantzen, E., Bryn, K., Hagen, N., Bergan, T., and Bøvre, K., 1978, Fatty acids and monosaccharides of Neisseriaceae in relation to established taxonomy, NIPH Ann. 1:59.Google Scholar
  68. Jantzen, E., and Lassen, J., 1980, Characterization of Yersinia species by analysis of whole cell fatty acids, Intern. J. System. Bacterioi. 30:421.Google Scholar
  69. Johns, R. B., and Perry, G. J., 1977, Lipids of the marine bacterium Flexibacter polymorphus, Arch. Microbiol. 114:267.Google Scholar
  70. Joseph, J. D., 1975, Identification of 3,9,12,15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates, Lipids 10:395.PubMedGoogle Scholar
  71. Júlak, J., Turecek, F., and Mikova, Z., 1980, Identification of characteristic branched chain fatty acids of Mycobacterium kansasii and M. gordonae by gas chromatography-mass spectrometry, J. Chromatog. 190:183.Google Scholar
  72. Kagawa, Y., and Ariga, T., 1977, Determination of molecular species of phospholipids from thermophilic bacterium PS3 by mass chromatography, J. Biochem. (Tokyo) 81:1161.Google Scholar
  73. Kakinuma, A., Sugino, H., Isono, M., Tamura, G., and Arima, K., 1969, Determination of fatty acid in surfactin and elucidation of the total structure of surfactin, Agr. Biol. Chem. 33:973.Google Scholar
  74. Kaneda, T., 1977, Fatty acids of the genus Bacillus An example of branched chain chain preference, Bacteriol Rev. 41:391.PubMedGoogle Scholar
  75. Kaneshiro, T., and Marr, A. G., 1962, Phospholipids of Azotobacter agilis, Agrobacterium tumefaciens and Escherichia coli, J. Lipid Res. 3:184.Google Scholar
  76. Karlsson, K. A., 1966, The chemical structure of phytosphingosine of human origin and a note on the lipid composition of the yeast Hansenula ciferii, Acta Chem. Scand. 20:2884.PubMedGoogle Scholar
  77. Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 1973, Improved identification of monomethyl paraffin chain branching (close to the methyl end) of long chain compounds by gas chromatography and mass spectrometry, Chem. Phys. Lipids 11:17.Google Scholar
  78. Kates, M, 1978, The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria, Prog. Chem. Fats Other Lipids 15:301.PubMedGoogle Scholar
  79. Kates, M, Tremblay, P., Anderson, R., and Volcani, B. E., 1978, Identification of the free and conjugated sterol in a nonphotosynthetic diatom, Nitzchia alba ,as 24-methylenecholesterol, Lipids 13:34.Google Scholar
  80. Kates, M., Yengoyan, L. S., and Sastry, P. S., 1965, A diether analog of phosphatidylglycerophosphate in Halobacterium cutirubrum, Biochim. Biophys. Acta 98:252.PubMedGoogle Scholar
  81. Kawahara, K., Uchida, K., and Aida, K., 1979, Direct hydroxylation in the biosynthesis of hydroxy fatty acids in Lipid A of Pseudomonas ovalis, Biochim. Biophys. Acta 572:1.PubMedGoogle Scholar
  82. Kawanami, J., and Otsuka, H., 1969, Lipids of Streptomyces sioyaensis. VI. On the ß -hydroxy fatty acids in siolipin, Chem. Phys. Lipids 3:135.PubMedGoogle Scholar
  83. Keddie, R. M., and Cure, G. L., 1977, The composition of the cell wall and distribution of free mycolic acids in named strains of Coryneform bacteria and in isolates from various natural sources, J. Appl. Bacteriol. 42:229.PubMedGoogle Scholar
  84. Kimura, A., 1976, Presence of free bases of C18and C20-phytosphingosine in a yeast, Candida intermedia, Agr. Biol. Chem. 40:239.Google Scholar
  85. Klein, R. A., Hazlewood, G. P., Kemp, P., and Dawson, R. M. C., 1979, A new series of long chain dicarboxylic acids with vicinal dimethyl branching found as major components of the lipids of Butyrivibrio spp., Biochem. J. 183:691.PubMedGoogle Scholar
  86. Knoche, H. W., and Shively, J. M., 1969, The identification of cis- 11,12-methylene-2hydroxyoctadecanoic acid from Thiobacillus thiooxidans, J. Biol. Chem. 244:4773.PubMedGoogle Scholar
  87. Kobayashi, T., Nishijima, M., Tamori, Y., Nojima, S., Seyama, Y., and Yamakawa, T., 1980, Acyl phosphatidylglycerol of Escherichia coli, Biochim. Biophys. Acta ,620:356.PubMedGoogle Scholar
  88. Kuksis, A., 1978, “Separation and Determination of Structure of Fatty Acids,” in Handbook of Lipid Research. 1. Fatty Acids and Glycerides ,(A. Kuksis, ed.), Plenum Press, New York, pp. 1–76.Google Scholar
  89. Kulmaczand, R. J., and Schroepfer, G. J., 1978, Dramatic alteration of sphingolipid bases of Hansenula ciferii by exogenous fatty acids, Biochem. Biophys. Res. Commun. 82:371.Google Scholar
  90. Laine, R. A., and Fischer, W., 1978, On the relationship between glycerophospholipids and lipoteichoic acids of gram positive bacteria. III. Di(glycerophospho)-acylkojibiosyldiacylglycerol and related compounds from Streptococcus lactis NCDO 712, Biochim. Biophys. Acta 529:250.PubMedGoogle Scholar
  91. Laine, R. A., Young, N. D., Gerber, J. N., and Sweeley, C. C., 1974, Identification of 2-hydroxy fatty acids in complex mixtures of fatty acid methyl esters by mass chromatography, Biomed. Mass Spectrom. 1:10.PubMedGoogle Scholar
  92. Lamonica, G., and Etemadi, H., 1967, Sur la coupure spécifique, en spectrométrie de masse, des aldehydes linéaires comportant des cycles propaniques. Bull. Soc. Chim. Fr. 4275.Google Scholar
  93. Lanéelle, G., and Asselineau, J., 1968, Structure d’un glycoside de peptidolipide isolé d’une mycobactérie, Eur. J. Biochem. 5:487.PubMedGoogle Scholar
  94. Lanéelle, M. A., Asselineau, J., and Castlenuovo, G., 1968, Relations chimiques et immunologiques chez les Actinomycétales. IV. Composition chimique des lipides de quatre souches de Streptomyces et d’une souche de N. (Str.) gardneri, Ann. Inst. Pasteur 114:305.Google Scholar
  95. Lanéelle, G., Asselineau, J., Wolstenholme, W. A., and Lederer, E., 1965, Determination de sequences d’acides amines dans des oligopeptides par la spectrométrie de masse. III. Structure d’un peptidolipide de Mycobacterium johnei, Bull. Soc. Chim. Fr. 2133.Google Scholar
  96. Langworthy, T. A., and Mayberry, W. R., 1976, A 1,2,3,4-tetrahydroxypentanesubstituted pentacyclic triterpene from Bacillus acidocaldarious, Biochim. Biophys. Acta 431:570.PubMedGoogle Scholar
  97. Langworthy, T. A., Mayberry, W. R., and Smith, P. F., 1976, A sulfonolipid and novel glucosaminyl glycolipids from the extreme acidothermophile Bacillus acidocaldarius, Biochim. Biophys. Acta 431:550.PubMedGoogle Scholar
  98. Larsson, L., Märdh, P. A., and Odham, G., 1979, Detection of tuberculostearic acid in mycobacteria and nocardiae by gas chromatography and mass spectrometry using selected ion monitoring, J. Chromatog., Biomed. Appl. 163:221.Google Scholar
  99. Lederer, E., Adam, A., Ciorbaru, R., Petit, J. F., and Wietzerbin, J., 1975, Cell walls of mycobacteria and related organisms ,Mol. Cell. Biochem. 7:87.PubMedGoogle Scholar
  100. Leonhadt, B. A., De Vilbiss, E. D., and Klun, J. A., 1983, Gas Chromatographie mass spectrométrie indication of double bond position in mono-unsaturated primary acetates and alcohols without derivatization, Org. Mass Spectrom. ,18:9.Google Scholar
  101. McCarthy, E. D., Han, J., and Calvin, M., 1968, Hydrogen atom transfer in mass spectrométrie fragmentation patterns of saturated aliphatic hydrocarbons, Anal. Chem. 40:1475.Google Scholar
  102. McCarthy, J. A., 1970, “Mass Spectrometry of Fatty Acid Derivatives”, in Topics in Lipid Chemistry ,(F. D. Gunstone, ed.), Logos Press Ltd., London, Vol. 1, pp. 369–440.Google Scholar
  103. McCloskey, J. A., and Law, J. H., 1967, Ring location in cyclopropane fatty acid esters by a mass spectrométrie method, Lipids 2:225.PubMedGoogle Scholar
  104. Madhavan, V. N., Done, J., and Vine, J., 1981, Characterization of two ornithine-containing lipids from Erwinia aroideae, Chem. Phys. Lipids 28:79.Google Scholar
  105. Maitra, S. K., Schotz, M. C., Yoshikawa, T. T., and Guze, L. B., 1978, Determination of lipid A and endotoxin in serum by mass spectroscopy, Proc. Natl. Acad. Sci. U.S.A., 75:3993.PubMedGoogle Scholar
  106. Marshall, J. L., Erickson, K. C., and Folsom, T. K., 1970, The esterification of carboxylic acids using a boron trifluoride-etherate-alcohol reagent, Tetrahedron Lett. 4011.Google Scholar
  107. Martin ,G., and Asselineau, J., 1969, Chromatographie en phase gazeuse de dérivés palmitoylés de Sucres simples, J. Chromatog. 39:322.Google Scholar
  108. Matthews, H. M., Yang, Y. K., and Jenkin, H. M., 1980, Alk-1-enyl ether phospholipids (plasmalogens) and glycolipids of Treponema hyodysenteriae, Biochim. Biophys. Acta 618:273.PubMedGoogle Scholar
  109. Minnikin, D. E., 1972, Ring location in cyclopropane fatty acid esters by boron trifluoridecatalyzed methoxylation followed by mass spectroscopy, Lipids 7:398.Google Scholar
  110. Minnikin, D. E., 1978, Location of double bonds and cyclopropane rings in fatty acids by mass spectrometry, Chem. Phys. Lipids 21:313.Google Scholar
  111. Minninkin, D. E., and Polgar, N., 1967a, Structural studies on the mycolic acids, Chem. Commun. 312.Google Scholar
  112. Minnikin, D. E., and Polgar, N., 1967b, The methoxymycolic and ketomycolic acids from human tubercle bacilli, Chem. Commun. 1172.Google Scholar
  113. Miyagawa, E., Azuma, R., Suto, T., and Yano, I., 1979, Occurrence of free ceramides in Bacteroides fragilis NCTC., J. Biochem. (Tokyo) 86:311.Google Scholar
  114. Moss, C. W., and Dees, S. B., 1975, Identification of microorganisms by gas chromatographicmass spectrometric analysis of cellular fatty acids, J. Chromatog. 12:595.Google Scholar
  115. Moss, C. W., and Dees, S. B., 1976, Cellular fatty acids and metabolic products of Pseudomonas species obtained from clinical specimens, J. Clin. Microbiol. 4:492.PubMedGoogle Scholar
  116. Moss, C. W., Dowell, V. R., Farshtchi, D., Raines, L. J., and Cherry, W. B., 1969, Cultural characteristics and fatty acid composition of Propionibacteria, J. Bacteriol. 97:561.PubMedGoogle Scholar
  117. Murata, T., Ariga, T., and Araki, E., 1978, Determination of double bond positions of unsaturated fatty acids by a chemical ionization mass spectrometry computer system, J. Lipid Res. 19:172.PubMedGoogle Scholar
  118. Nakajima, N., Imukai, M., Haneishi, T., Terahara, A., Arai, M., Kinoshita, T., and Tamura, C., 1978, Structural determination of globomycin, J. Antibiot. (Tokyo) 31:426.Google Scholar
  119. Nishii, M., Kihara, T., Isono, K., Higashijima, T., and Miyazawa, T., 1980, The structure of lipopeptin A, Tetrahedron Lett. 21:4627.Google Scholar
  120. Nishimura, Y., Yamamoto, H., and Iizuka, H., 1979, Taxonomical studies of Acinetobacter species. Cellular fatty acid composition, Z. Allg. Mikrobiol. 19:307.PubMedGoogle Scholar
  121. Odham, G., Larsson, L., and Mårdh, P. A., 1979, Demonstration of tuberculostearic acid in sputum from patients with pulmonary tuberculosis by selected ion monitoring, J. Clin. Invest. 63:813.PubMedGoogle Scholar
  122. Odham, G., Stenhagen, E., and Waern, K., 1970, Stereospecific total synthesis of mycocerosic acids, Ark. Kemi 31:533.Google Scholar
  123. Ohno, Y., Yano, I., Hiramatsu, T., and Masui, M., 1976, Lipids and fatty acids of a moderately halophilic bacterium, Biochim. Biophys. Acta 424:337.PubMedGoogle Scholar
  124. Oshima, M., and Ariga, T., 1975, -Cyclohexyl fatty acids in acidophilic thermophilic bacteria, J. Biol. Chem. 250:6963.PubMedGoogle Scholar
  125. Panos, C., 1965, Separation and identification of positional isomers of bacterial long chain monoethenoid fatty acids by Golay column chromatography, J. Gas Chromatog. 3:278.Google Scholar
  126. Panos, C., and Henrickson, C. V., 1968, Resolution of positional isomers of bacterial long chain cyclopropane ring containing fatty acids by capillary column chromatography, J. Gas. Chromatog. 6:551.Google Scholar
  127. Peypoux, F., Guinand, M., Michel, G., Delcambe, L., Das, B. C., Varenne, P., and Lederer, E., 1973, Isolement de l’acide 3-amino-12-méthyltétradécanoïque and 3-amino-12méthyltridécanoïque à partir de l’iturine, antibiotique de Bacillus subtilis, Tetrahedron 29:3455.Google Scholar
  128. Peypoux, F., Guinand, M., Michel, G., Delcambe, L., Das, B. C., and Lederer, E., 1978, Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis, Biochemistry 17:3992.PubMedGoogle Scholar
  129. Promé, J. C., 1968, Localisation d’un cycle propanique dans une substance aliphatique par examen du spectre de masse des cétones obtenues par oxydation, Bull. Soc. Chim. Fr. 655.Google Scholar
  130. Promé, J. C., and Asselineau, C., 1966, Sur l’oxydation chromique de dialcoyl-1,2 cyclopropanes, Bull. Soc. Chim. Fr. 2114.Google Scholar
  131. Puzo, G., and Promé, J. C., 1973, Fragmentation des aldéhydes cyclopropaniques en spectrométrie de masse. Intervention d’interactions bifonctionnelles, Tetrahedron 29:3619.Google Scholar
  132. Puzo, G., Tissié, G., Lacave, C., Aurelle, H., and Promé, J. C., 1978, Structural determination of “Cord Factor” from a Corynebacterium diphtheriae strain by a combination of mass spectral ionization methods, Biomed. Mass Spectrom. 5:699.PubMedGoogle Scholar
  133. Rohmer, M., and Ourisson, G., 1976a, Structure des bacteriophanetetrols d’Acetobacter xylinum, Tetrahedron Lett. 3633.Google Scholar
  134. Rohmer, M., and Ourisson, G., 1976b, Dérivés du bactériophane: Variations structurales et repartition, Tetrahedron Lett. 3637.Google Scholar
  135. Roussel, J., and Asselineau, J., 1980, Fatty acid composition of the lipids of Pseudomonas mildenbergii. Presence of a fatty acid containing two conjugated double bonds, Biochim. Biophys. Acta 619:689.PubMedGoogle Scholar
  136. Ryhage, R., 1962, Mass spectrometric analysis of the methylstearic acid from Mycobacterium phlei ,J. Biol. Chem. 237:670.Google Scholar
  137. Ryhage, R., Ställberg-Stenhagen, S., and Stenhagen, E., 1961, Mass spectrometric studies. VII. Methyl esters of -unsaturated long chain acids. On the structure of C27-phthienoic acid, Ark.Kemi 18:179.Google Scholar
  138. Ryhage, R., and Stenhagen, E., 1960a, Mass spectrometric studies. IV. Esters of monomethylsubstituted long chain carboxylic acids, Ark. Kemi 15:291.Google Scholar
  139. Ryhage, R., and Stenhagen, E., 1960b, Mass spectrometry in lipid research, J. Lipid Res. 1:361.PubMedGoogle Scholar
  140. Sasak, W., and Chojnacki, T., 1977, The identification of lipid acceptor and the biosynthesis of lipid-linked glucose in Bacillus stearothermophilus, Arch. Biochem. Biophys. 181:402.PubMedGoogle Scholar
  141. Sato, N., Murata, N., Miura, Y., and Ueta, N., 1979, Effect of growth temperature and fatty acid composition in the blue-green algae, Anaboena variabilis and Anacystis nidulans, Biochim. Biophys. Acta 572:19.PubMedGoogle Scholar
  142. Schubert, K., Rose, G., Watchel, H., Hörhold, C., and Ikekawa, N., 1968, Zum Vorkommen von Sterinen in Bakterien, Eur. J. Biochem. 5:246.PubMedGoogle Scholar
  143. Shah, H. N., and Collins, M. D., 1980, Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa, J. Appl. Bacteriol. 48:75.PubMedGoogle Scholar
  144. Stein, R. A., Slawson, V., and Mead, J. F., 1967, Gas-liquid Chromatography of Fatty Acids and Derivatives, in Lipid Chromatographic Analysis (G. V. Marinetti, ed.), Marcel Dekker, New York, Vol. 1, pp. 361–400.Google Scholar
  145. Su, C. J., Reusch, R., and Sadoff, H. L., 1979, Fatty acids in phospholipids of cells, cysts and germinating cysts of Azotobacter vinelandii, J. Bacteriol. 137:1434.PubMedGoogle Scholar
  146. Sugatani, J., Kino, M., Saito, K., Matsuo, T., Matsuda, H., and Katakuse, I., 1982, Analysis of molecular species of phospholipids by field desorption mass spectrometry, Biomed. Mass Spectrom. ,9:293.PubMedGoogle Scholar
  147. Tahara, S., Hosokawa, K., and Mizutani, J., 1980, Occurrence of 7-hydroxyalkanoic acids in Mucor species, Agr. Biol. Chem. 44:193.Google Scholar
  148. Takayama, K., Qureshi, N., and Schnoes, H. K., 1978, Isolation and characterization of the monounsaturated long chain fatty acids of Mycobacterium tuberculosis, Lipids 13:575.PubMedGoogle Scholar
  149. Thiele, O. W., Lacave, C., and Asselineau, J., 1969, On the fatty acids of Brucella abortus and Brucella melitensis, Eur. J. Biochem. 7:393.PubMedGoogle Scholar
  150. Thiele, O. W., and Schwinn, G., 1973, The free lipids of Brucella melitensis and Bordetella pertussis, Eur. J. Biochem. 34:333.PubMedGoogle Scholar
  151. Tomiyasu, I., Toriyama, S., Yano, I., and Masui, M., 1981, Changes in molecular species composition of nocardomycolic acids in Nocardia rubra by the growth temperature, Chem. Phys. Lipids 28:41.Google Scholar
  152. Toriyama, S., Yano, I., Masui, M., Kusunose, M., and Kusunose, E., 1978, Separation of C50–60 and C70–80 mycolic acids and molecular species and their changes by growth temperatures in Mycobacterium phlei, FEBS Lett. 95:111.PubMedGoogle Scholar
  153. Tornabene, T. G., and Langworthy, T. A., 1978, Diphytanyl and Dibiphytanyl glycerol ether lipids of methanogeneic Archaebacteria, Science 203:51.Google Scholar
  154. Tornabene, T. G., and Markey, S. P., 1971, Characterization of branched monounsaturated hydrocarbons of Sarcina lutea and Sarcina flava, Lipids 6:190.PubMedGoogle Scholar
  155. Uchida, K., 1974, Occurrence of saturated and monounsaturated fatty acids in the unusually long chains (C20-C30) in Lactobacillus heterohiochii ,an alcohophilic bacterium, Biochim. Biophys. Acta 348:86.PubMedGoogle Scholar
  156. Vaver, V. A., and Ushakov, A. N., 1980, High temperature gas-liquid chromatography in lipid analysis, Methods Biochem. Anal. ,26:328.Google Scholar
  157. Veerkamp, J. H., 1971, Fatty acid composition of Bifidobacterium and Lactobacillus strains, J.Bacteriol. 108:861.PubMedGoogle Scholar
  158. Vilkas, E., Rojas, A., Das, B. C., Wolstenholme, W. A., and Lederer, E., 1966, Détermination de séquences d’acides aminés dans les oligopeptides par la spectrométrie de masse. VI. Structure du mycoside Cb, peptidoglycolipide de Mycobacterium butyricum, Tetrahedron 22:2809.Google Scholar
  159. White, D. C., Tucker, A. N., and Sweeley, C. C., 1969, Characterization of the wo-branched sphinganines from the ceramide phospholipids of Bacteroides melaninogenicus, Biochim. Biophys. Acta 187:527.PubMedGoogle Scholar
  160. Volkman, J. K., Eglinton, G. and Corner, E. D. S., 1980, Sterols and fatty acids of the marine diatom Biddulphia sinensis, Phytochemistry 19:1809.Google Scholar
  161. Volkman, J. K., Eglinton, G., Corner, E. D. S., and Forsberg, T. E. V., 1980, Long chain alkenes and alkenones in the marine coccolithophoride Emiliania huxleyi, Phytochemistry 19:2619.Google Scholar
  162. Von Rudioff, E., 1956, Periodate-permanganate oxidations. V. Oxidation of lipids in media containing organic solvents, Can. J. Chem. 34:1413.Google Scholar
  163. Wada, H., Okada, H., Suginaka, H., Tomiyasu, I., and Yano, I., 1981, Gas Chromatographie and mass spectromtric analysis of molecular species of bacterionemamycolic acids from Bacterionema matruchotii, FEMS Microbiol . Lett. 11:187.Google Scholar
  164. Welby-Gieusse, M., Lanéelle, M. A., and Asselineau, J., 1970, Structure des acides corynomycoliques de Corynebacterium hofmanii et leur implication biogénétique, Eur. J. Biochem. 13:164.PubMedGoogle Scholar
  165. Yabuuchi, E., Tanimura, E. Ohyama, A., Yano, I., and Yamamoto, A., 1979, Flavobacterium devorans ATCC 10829: A strain of Pseudomonas paucimobilis, J. Gen. Appl. Microbiol. 25:95.Google Scholar
  166. Yang, L. L., and Haug, A., 1979, Structure of membrane lipids and physicobiochemical properties of the plasma membrane of Thermoplasma acidophilum adapted to growth at 37°C., Biochim. Biophys. Acta 573:308.PubMedGoogle Scholar
  167. Yano, I., Furukawa, Y. and Kusunose, M., 1969, Occurrence of -hydroxy fatty acids in Actinomycetales, FEBS Lett. 4:96.PubMedGoogle Scholar
  168. Yano, I., and Saito, K., 1972, Gas Chromatographic and mass spectrométrie analysis of molecular species of corynomycolic acids from Corynebacterium ulcerans, FEBS Lett. 23:352.PubMedGoogle Scholar
  169. Yano, I., Toriyama, S., Masui, M., Kusunose, M., Kusunose, E., and Akimori, N., 1978a, Gas Chromatographie and mass spectrometrie analysis of C50–60 monoand dicarboxy mycolic acids in Mycobacteria, Proc. 3d Meeting Japan. Soc. Medical Mass Spectrom. 3:169.Google Scholar
  170. Yano, I., Kageyama, K., Ohno, Y., Masui, M., Kusunose, E., Kusunose, M., and Akimori, N., 1978b, Separation and analysis of molecular species of mycolic acids in Nocardia and related taxa by gas chromatography-mass spectrometry, Biomed. Mass. Spectrom. 5:14.PubMedGoogle Scholar
  171. Zepke, H. D., Heinz, E., Radunz, A., Linscheid, M., and Pesch, R., 1978, Combination and positional distribution of fatty acids in lipids of blue-green algae, Arch. Microbiol. 119:157.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Cécile Asselineau
    • 1
  • Jean Asselineau
    • 1
  1. 1.Centre de Recherche de Biochimie et Génétique CellulairesCNRSToulouse CedexFrance

Personalised recommendations